Chinese Journal of Chemical Engineering ›› 2025, Vol. 86 ›› Issue (10): 222-232.DOI: 10.1016/j.cjche.2025.09.004
Previous Articles Next Articles
Shanyu Xie, Yuanpeng Wang, Qingbiao Li
Received:2025-03-28
Revised:2025-09-15
Accepted:2025-09-17
Online:2025-09-22
Published:2025-10-28
Contact:
Yuanpeng Wang,E-mail:wypp@xmu.edu.cn;Qingbiao Li,E-mail:kelqb@xmu.edu.cn
Supported by:Shanyu Xie, Yuanpeng Wang, Qingbiao Li
通讯作者:
Yuanpeng Wang,E-mail:wypp@xmu.edu.cn;Qingbiao Li,E-mail:kelqb@xmu.edu.cn
基金资助:Shanyu Xie, Yuanpeng Wang, Qingbiao Li. Design and optimization of microalgae photobioreactors for treatment of nitrogen and phosphorus in wastewater[J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 222-232.
Shanyu Xie, Yuanpeng Wang, Qingbiao Li. Design and optimization of microalgae photobioreactors for treatment of nitrogen and phosphorus in wastewater[J]. 中国化学工程学报, 2025, 86(10): 222-232.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.09.004
| [1] M.D.T. Pham, X.T. Bui, T.K.Q. Vo, T.S. Dao, L.T. Le, T.D.H. Vo, K.P.H. Huynh, T.B. Nguyen, C. Lin, C. Visvanathan, Microalgae - bacteria based wastewater treatment systems: Granulation, influence factors and pollutants removal, Bioresour. Technol. 418 (2025) 131973. [2] L.Y. Wu, D.F. Xu, B. Li, D. Wu, H. Yang, Enhanced removal efficiency of nitrogen and phosphorus from swine wastewater using MgO modified pig manure biochar, J. Environ. Chem. Eng. 12 (1) (2024) 111793. [3] S. Rahimi, O. Modin, I. Mijakovic, Technologies for biological removal and recovery of nitrogen from wastewater, Biotechnol. Adv. 43 (2020) 107570. [4] L.M. Yang, Y.Y. Tu, H.Y. Li, W.L. Zhan, H.Q. Hu, Y. Wei, C.L. Chen, K.T. Liu, P.H. Shao, M. Li, G. Yang, X.B. Luo, Fluorine-rich supramolecular nano-container crosslinked hydrogel for lithium extraction with super-high capacity and extreme selectivity, Angew. Chem. Int. Ed 62 (38) (2023) e202308702. [5] L.M. Yang, Z. Gao, T. Liu, M.T. Huang, G.Z. Liu, Y.F. Feng, P.H. Shao, X.B. Luo, Direct electrochemical leaching method for high-purity lithium recovery from spent lithium batteries, Environ. Sci. Technol. 57 (11) (2023) 4591-4597. [6] L.M. Yang, Y.F. Feng, C.Q. Wang, D.F. Fang, G.P. Yi, Z. Gao, P.H. Shao, C.L. Liu, X.B. Luo, S.L. Luo, Closed-loop regeneration of battery-grade FePO4 from lithium extraction slag of spent Li-ion batteries via phosphoric acid mixture selective leaching, Chem. Eng. J. 431 (2022) 133232. [7] M. Wang, X.X. Ye, H.W. Bi, Z.B. Shen, Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities, Biotechnol. Biofuels Bioprod. 17 (1) (2024) 10. [8] G. Penloglou, A. Pavlou, C. Kiparissides, Recent advancements in photo-bioreactors for microalgae cultivation: a brief overview, Processes 12 (6) (2024) 1104. [9] H. Yang, X. Xin, CO2 capture and lipid production performance of microalgae in the S-shaped photobioreactor under different culture modes, Enzyme Microb. Technol. 165 (2023) 110194. [10] R.C. Chin-On, M.J. Barbosa, R.H. Wijffels, M. Janssen, A novel V-shaped photobioreactor design for microalgae cultivation at low latitudes: Modelling biomass productivities of Chlorella sorokiniana on Bonaire, Chem. Eng. J. 449 (2022) 137793. [11] C.B. Zhu, X.Q. Zhai, Y.M. Xi, J.H. Wang, F.T. Kong, Y.P. Zhao, Z.Y. Chi, Progress on the development of floating photobioreactor for microalgae cultivation and its application potential, World J. Microbiol. Biotechnol. 35 (12) (2019) 190. [12] P. Sathinathan, H.M. Parab, R. Yusoff, S. Ibrahim, V. Vello, G.C. Ngoh, Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: a review, Renew. Sustain. Energy Rev. 173 (2023) 113096. [13] M.N. Han, C.F. Zhang, F.H. Li, S.H. Ho, Data-driven analysis on immobilized microalgae system: New upgrading trends for microalgal wastewater treatment, Sci. Total Environ. 852 (2022) 158514. [14] B.N. Abbasi, Y.Q. Wu, Z.M. Luo, Exploring the impact of artificial intelligence on curriculum development in global higher education institutions, Educ. Inf. Technol. 30 (1) (2025) 547-581. [15] B. Szelag, J. Gonzalez-Camejo, A.L. Eusebi, R. Barat, A. Kiczko, F. Fatone, Multi-criteria analysis of the continuous operation of a membrane photobioreactor to treat sewage: Modeling and sensitivity analysis, Chem. Eng. J. 496 (2024) 154202. [16] X.Z. Chen, N. Kroell, M. Althaus, T. Pretz, R. Pomberger, K. Greiff, Enabling mechanical recycling of plastic bottles with shrink sleeves through near-infrared spectroscopy and machine learning algorithms, Resour. Conserv. Recycl. 188 (2023) 106719. [17] R.A. Garcia-Hernandez, J.M. Celaya-Padilla, H. Luna-Garcia, A. Garcia-Hernandez, C.E. Galvan-Tejada, J.I. Galvan-Tejada, H. Gamboa-Rosales, D. Rondon, K.O. Villalba-Condori, Emotional state detection using electroencephalogram signals: a genetic algorithm approach, Appl. Sci. 13 (11) (2023) 6394. [18] D. Susanna, R. Dhanapal, R. Mahalingam, V. Ramamurthy, Increasing productivity of Spirulina platensis in photobioreactors using artificial neural network modeling, Biotechnol. Bioeng. 116 (11) (2019) 2960-2970. [19] R.K. Oruganti, A.P. Biji, T. Lanuyanger, P.L. Show, M. Sriariyanun, V.K.K. Upadhyayula, V. Gadhamshetty, D. Bhattacharyya, Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: a critical review, Sci. Total Environ. 876 (2023) 162797. [20] L. Delgadillo-Mirquez, F. Lopes, B. Taidi, D. Pareau, Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture, Biotechnol. Rep. 11 (2016) 18-26. [21] G. Salbitani, S. Carfagna, Ammonium utilization in microalgae: a sustainable method for wastewater treatment, Sustainability 13 (2) (2021) 956. [22] Y.Y. Su, Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment, Sci. Total Environ. 762 (2021) 144590. [23] R. Bossa, M. Di Colandrea, G. Salbitani, S. Carfagna, Phosphorous utilization in microalgae: physiological aspects and applied implications, Plants 13 (15) (2024) 2127. [24] A. Beuckels, E. Smolders, K. Muylaert, Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment, Water Res. 77 (2015) 98-106. [25] S.M. Zakir Hossain, N. Sultana, M.E. Mohammed, S.A. Razzak, M.M. Hossain, Hybrid support vector regression and crow search algorithm for modeling and multiobjective optimization of microalgae-based wastewater treatment, J. Environ. Manag. 301 (2022) 113783. [26] J.M. Rozenberg, B.A. Sorokin, A.N. Mukhambetova, A.A. Emelianova, V.V. Kuzmin, O.Y. Belogurova-Ovchinnikova, D.V. Kuzmin, Recent advances and fundamentals of microalgae cultivation technology, Biotechnol. J. 19 (3) (2024) e2300725. [27] L.A. Castillo, P.J. Valades-Pelayo, H.J. Avila-Paredes, J.J. Cabello, A. Balbuena, Methodology for the fast direct estimation of spectral radiative transport properties in microalgae photobioreactors, Chem. Eng. J. 458 (2023) 141462. [28] E. Segredo-Morales, E. Gonzalez, C. Gonzalez-Martin, L. Vera, Novel vertical upflow multi-column configured membrane photobioreactor with a filtration control system for outdoor microalgae-bacteria cultivation, harvesting and wastewater reclamation, Chem. Eng. J. 482 (2024) 148799. [29] Y. Yang, M.M. Zheng, S. Qiao, J.T. Zhou, Z. Bi, X. Quan, Electro-Fenton improving fouling mitigation and microalgae harvesting performance in a novel membrane photobioreactor, Water Res. 210 (2022) 117955. [30] L. Zhao, J. Tang, Y.W. Xu, Y.F. Zhang, Z.H. Song, G.P. Fu, Z.L. Hu, A vertical-flow constructed wetland-microalgal membrane photobioreactor integrated system for treating high-pollution-load marine aquaculture wastewater: a lab-scale study, Sci. Total Environ. 919 (2024) 170465. [31] M. Ding, C. Wang, S. Woo Bae, H. Yong Ng, Enhanced nutrient removal and bioenergy production in microalgal photobioreactor following anaerobic membrane bioreactor for decarbonized wastewater treatment, Bioresour. Technol. 364 (2022) 128120. [32] F. Gao, Y.Y. Peng, C. Li, W. Cui, Z.H. Yang, G.M. Zeng, Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): Effect of HRT and long-term operation, Chem. Eng. J. 335 (2018) 169-175. [33] Y.Y. Peng, F. Gao, H.L. Yang, H.W.J. Wu, C. Li, M.M. Lu, Z.Y. Yang, Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR), Sci. Total Environ. 725 (2020) 138524. [34] M.R. Bilad, H.A. Arafat, I.F.J. Vankelecom, Membrane technology in microalgae cultivation and harvesting: a review, Biotechnol. Adv. 32 (7) (2014) 1283-1300. [35] M. Shafiquzzaman, M.M. Hasan, H. Haider, A.T. Ahmed, S.A. Razzak, Comparative evaluation of low-cost ceramic membrane and polymeric micro membrane in algal membrane photobioreactor for wastewater treatment, J. Environ. Manage. 345 (2023) 118894. [36] M.J. Zhang, L.S. Yao, E. Maleki, B.Q. Liao, H.J. Lin, Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges, Algal Res. 44 (2019) 101686. [37] W.S.K. Abudaqqa, C.M.R. Madhuranthakam, O. Chaalal, Algae-based membrane bioreactors: a mini review on their progress and processes for wastewater treatment, J. Water Process. Eng. 59 (2024) 104937. [38] J.J. Zhao, L.C. Peng, X.M. Ma, Innovative microalgae technologies for mariculture wastewater treatment: Single and combined microalgae treatment mechanisms, challenges and future prospects, Environ. Res. 266 (2025) 120560. [39] M.N. Han, C.F. Zhang, S.H. Ho, Immobilized microalgal system: an achievable idea for upgrading current microalgal wastewater treatment, Environ. Sci. Ecotechnol. 14 (2023) 100227. [40] M.R. Yu, L. Wang, P.Z. Feng, Z.M. Wang, S.N. Zhu, Treatment of mixed wastewater by vertical rotating microalgae-bacteria symbiotic biofilm reactor, Bioresour. Technol. 393 (2024) 130057. [41] S. Cao, F. Teng, T. Wang, X.X. Li, J.H. Lv, Z.H. Cai, Y. Tao, Characteristics of an immobilized microalgae membrane bioreactor (iMBR): Nutrient removal, microalgae growth, and membrane fouling under continuous operation, Algal Res. 51 (2020) 102072. [42] J. Shi, B. Podola, M. Melkonian, Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae, Bioresour. Technol. 154 (2014) 260-266. [43] T. Naumann, Z. Cebi, B. Podola, M. Melkonian, Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor, J. Appl. Phycol. 25 (5) (2013) 1413-1420. [44] Q. Zhang, C.X. Liu, Y.B. Li, Z.G. Yu, Z.H. Chen, T. Ye, X. Wang, Z.Q. Hu, S.M. Liu, B. Xiao, S.P. Jin, Cultivation of algal biofilm using different lignocellulosic materials as carriers, Biotechnol. Biofuels 10 (2017) 115. [45] M. Gross, W. Henry, C. Michael, Z.Y. Wen, Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest, Bioresour. Technol. 150 (2013) 195-201. [46] M.M.R. Talukder, P. Das, J.C. Wu, Immobilization of microalgae on exogenous fungal mycelium: a promising separation method to harvest both marine and freshwater microalgae, Biochem. Eng. J. 91 (2014) 53-57. [47] Y.H. Sun, Y. Huang, Q. Liao, Q. Fu, X. Zhu, Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor, Bioresour. Technol. 207 (2016) 31-38. [48] S.Z. Xue, Q.H. Zhang, X. Wu, C.H. Yan, W. Cong, A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae, Bioresour. Technol. 138 (2013) 141-147. [49] S.M. Zakir Hossain, N. Sultana, M.S. Jassim, G. Coskuner, L.M. Hazin, S.A. Razzak, M.M. Hossain, Soft-computing modeling and multiresponse optimization for nutrient removal process from municipal wastewater using microalgae, J. Water Process. Eng. 45 (2022) 102490. [50] Q. Liao, L. Li, R. Chen, X. Zhu, A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation, Bioresour. Technol. 161 (2014) 186-191. [51] L. Borella, E. Sforza, A. Bertucco, An internally LED illuminated photobioreactor to increase energy conversion efficiency: Design and operation, Energy Convers. Manag. 270 (2022) 116224. [52] J.P. Diaz, C. Inostroza, F.G. Acien Fernandez, Fibonacci-type tubular photobioreactor for the production of microalgae, Process. Biochem. 86 (2019) 1-8. [53] W.C. Cheng, J.K. Huang, J.P. Chen, Computational fluid dynamics simulation of mixing characteristics and light regime in tubular photobioreactors with novel static mixers, J. Chem. Technol. Biotechnol. 91 (2) (2016) 327-335. [54] J.C. Xu, J. Cheng, K. Xin, J.H. Xu, W.J. Yang, Strengthening flash light effect with a pond-tubular hybrid photobioreactor to improve microalgal biomass yield, Bioresour. Technol. 318 (2020) 124079. [55] C.H. Shu, C.C. Tsai, W.H. Liao, K.Y. Chen, H.C. Huang, Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae, J. Chem. Technol. Biotechnol. 87 (5) (2012) 601-607. [56] J. Wang, Y.X. Wang, Z.Q. Gu, H.J. Mou, H. Sun, Stimulating carbon and nitrogen metabolism of Chlorella pyrenoidosa to treat aquaculture wastewater and produce high-quality protein in plate photobioreactors, Sci. Total Environ. 878 (2023) 163061. [57] S. Zhang, T.H. Kim, T.H. Han, S.J. Hwang, Influence of light conditions of a mixture of red and blue light sources on nitrogen and phosphorus removal in advanced wastewater treatment using Scenedesmus dimorphus, Biotechnol. Bioprocess Eng. 20 (4) (2015) 760-765. [58] T.H. Kim, Y. Lee, S.H. Han, S.J. Hwang, The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment, Bioresour. Technol. 130 (2013) 75-80. [59] B.D. Fernandes, G.M. Dragone, J.A. Teixeira, A.A. Vicente, Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content, Appl. Biochem. Biotechnol. 161 (1-8) (2010) 218-226. [60] L. Borella, E. Sforza, A. Bertucco, Effect of residence time in continuous photobioreactor on mass and energy balance of microalgal protein production, N. Biotechnol. 64 (2021) 46-53. [61] C.Y. Chen, Y.H. Chang, H.Y. Chang, Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production, Algal Res. 13 (2016) 264-270. [62] B.Y. Gao, J. Liu, C.W. Zhang, D.B. Van de Waal, Biological stoichiometry of oleaginous microalgal lipid synthesis: The role of N: P supply ratios and growth rate on microalgal elemental and biochemical composition, Algal Res. 32 (2018) 353-361. [63] J.L. Zhou, J.N. Li, D. Zhou, J.M. Wang, Y.H. Ye, C. Zhang, F. Gao, Dialysis bag-microalgae photobioreactor: novel strategy for enhanced bioresource production and wastewater purification, J. Environ. Manage. 354 (2024) 120439. [64] A. Abdel-Baset, I.A. Matter, M.A. Ali, Enhanced Scenedesmus obliquus cultivation in plastic-type flat panel photobioreactor for biodiesel production, Sustainability 16 (8) (2024) 3148. [65] N.K.Q. Nguyen, X.T. Bui, T.S. Dao, M.D.T. Pham, H.H. Ngo, C. Lin, K.A. Lin, P.D. Nguyen, K.P.H. Huynh, T.K.Q. Vo, V.T. Tra, T.S. Le, Influence of hydrodynamic shear stress on activated algae granulation process for wastewater treatment, Environ. Technol. Innov. 33 (2024) 103494. [66] X. Gao, B. Kong, R.D. Vigil, Multiphysics simulation of algal growth in an airlift photobioreactor: Effects of fluid mixing and shear stress, Bioresour. Technol. 251 (2018) 75-83. [67] M.H.A. Michels, A.J. van der Goot, M.H. Vermue, R.H. Wijffels, Cultivation of shear stress sensitive and tolerant microalgal species in a tubular photobioreactor equipped with a centrifugal pump, J. Appl. Phycol. 28 (1) (2016) 53-62. [68] Y. Wu, Y.Q. He, T. Zhao, Y. Zhao, Z. Yu, H.Y. Pei, Enhanced production of microalgal metabolites through aeration coupled with stirring, Sustainability 16 (20) (2024) 9001. [69] C.B. Zhu, Y. Ji, X. Du, F.T. Kong, Z.Y. Chi, Y.P. Zhao, A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds, Sci. Total Environ. 852 (2022) 158515. [70] B. Aslanbay Guler, I. Deniz, Z. Demirel, S.S. Oncel, E. Imamoglu, Computational fluid dynamics modelling of stirred tank photobioreactor for Haematococcus pluvialis production: Hydrodynamics and mixing conditions, Algal Res. 47 (2020) 101854. [71] Y.L. Luo, P. Le-Clech, R.K. Henderson, Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: a review, Algal Res. 24 (2017) 425-437. [72] P. Yaqoubnejad, H.A. Rad, M. Taghavijeloudar, Development a novel hexagonal airlift flat plate photobioreactor for the improvement of microalgae growth that simultaneously enhance CO2 bio-fixation and wastewater treatment, J. Environ. Manage. 298 (2021) 113482. [73] J.C. Xu, J. Cheng, K. Xin, J.H. Xu, W.J. Yang, Developing a spiral-ascending CO2 dissolver to enhance CO2 mass transfer in a horizontal tubular photobioreactor for improved microalgal growth, ACS Sustainable Chem. Eng. 8 (51) (2020) 18926-18935. [74] Z.G. Yang, H.Y. Pei, F. Han, Y.T. Wang, Q.J. Hou, Y. Chen, Effects of air bubble size on algal growth rate and lipid accumulation using fine-pore diffuser photobioreactors, Algal Res. 32 (2018) 293-299. [75] J. Cheng, Y.M. Song, Y. Miao, W.B. Guo, Y.G. Wang, X. Li, W.J. Yang, J.H. Zhou, Three-stage shear-serrated aerator broke CO2 bubbles to promote mass transfer and microalgal growth, ACS Sustainable Chem. Eng. 8 (2) (2020) 939-947. [76] J. Cheng, X. Lai, Q. Ye, W.B. Guo, J.C. Xu, W.B. Ren, J.H. Zhou, A novel jet-aerated tangential swirling-flow plate photobioreactor generates microbubbles that enhance mass transfer and improve microalgal growth, Bioresour. Technol. 288 (2019) 121531. [77] J.L. Wang, C. Hu, W.L. He, F.Z. Du, N.Z. Jiao, J.H. Liu, C.B. Zhu, Novel thin-layer fountain photobioreactors for the high-density cultivation of Spirulina sp, ACS Sustainable Chem. Eng. 11 (47) (2023) 16818-16827. [78] Z.B. Yang, J. Cheng, W.J. Yang, J.H. Zhou, K.F. Cen, Developing a water-circulating column photobioreactor for microalgal growth with low energy consumption, Bioresour. Technol. 221 (2016) 492-497. [79] P. Li, Y.J. Luo, J.S. Tian, Y.W. Cheng, S.J. Wang, X. An, J.X. Zheng, H. Yan, H.T. Duan, J. Zhang, Z.C. Pan, Y.W. Chen, R. Wang, H.Z. Zhou, Z.Q. Wang, Z.L. Tan, X. Li, Outdoor tubular photobioreactor microalgae-microorganisms biofilm treatment of municipal wastewater: Enhanced heterotrophic assimilation and synergistic aerobic denitrogenation, Bioresour. Technol. 408 (2024) 131151. [80] V. Belohlav, E. Uggetti, J. Garcia, T. Jirout, L. Kratky, R. Diez-Montero, Assessment of hydrodynamics based on Computational Fluid Dynamics to optimize the operation of hybrid tubular photobioreactors, J. Environ. Chem. Eng. 9 (5) (2021) 105768. [81] J.W. Fu, H.Y. Peng, Y. Huang, A. Xia, X.Q. Zhu, X. Zhu, Q. Liao, Integrating wind-driven agitating blade into a floating photobioreactor to enhance fluid mixing and microalgae growth, Bioresour. Technol. 372 (2023) 128660. [82] J.J. Huang, G. Bunjamin, E.S. Teo, D.B. Ng, Y.K. Lee, An enclosed rotating floating photobioreactor (RFP) powered by flowing water for mass cultivation of photosynthetic microalgae, Biotechnol. Biofuels 9 (2016) 218. [83] Y.J. Zhang, C.H. Wang, D.F. Wu, X.T. Guo, L. Yu, M. Zhang, Probing the effect of straight chain fatty acids on the properties of lead-containing plexiglass, React. Chem. \& Eng., (2021). [84] A.K. Ahangar, P. Yaqoubnejad, K. Divsalar, S. Mousavi, M. Taghavijeloudar, Design a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution, Bioresour. Technol. 387 (2023) 129577. [85] I.S. Yang, E.S. Salama, J.O. Kim, S.P. Govindwar, M.B. Kurade, M.S. Lee, H.S. Roh, B.H. Jeon, Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal, Energy Convers. Manag. 117 (2016) 54-62. [86] O. Zeriouh, J. V. Reinoso-Moreno, L. Lopez-Rosales, M. C. Ceron-Garcia, A. Sanchez Miron, F. Garcia-Camacho, E. Molina-Grima, Assessment of a photobioreactor-coupled modified Robbins device to compare the adhesion of Nannochloropsis gaditana on different materials, Algal Res. 37 (2019) 277-287. [87] X. Chen, Z.P. Li, N. He, Y.M. Zheng, H. Li, H.T. Wang, Y.P. Wang, Y.H. Lu, Q.B. Li, Y.J. Peng, Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor, Biotechnol. Biofuels 11 (2018) 190. [88] S.L. Lu, G.Y. Chu, C. Gao, Y.G. Zhao, W.Z. Chen, C.J. Jin, Q.Z. Wang, M.C. Gao, Effect of light intensity on nitrogen transformation, enzymatic activity, antioxidant system and transcriptional response of Chlorella pyrenoidosa during treating mariculture wastewater, Bioresour. Technol. 397 (2024) 130465. [89] H. Shao, Y.H. Sun, X.X. Jiang, J. Hu, C.L. Guo, C.J. Lu, F.H. Guo, C.H. Sun, Y.J. Wang, C.C. Dai, Towards biomass production and wastewater treatment by enhancing the microalgae-based nutrients recovery from liquid digestate in an innovative photobioreactor integrated with dialysis bag, J. Environ. Manage. 317 (2022) 115337. [90] X.S. Tian, X.A. Lin, Q. Xie, J.P. Liu, L.Z. Luo, Effects of temperature and light on microalgal growth and nutrient removal in turtle aquaculture wastewater, Biology 13 (11) (2024) 901. [91] G. Luzi, C. McHardy, Modeling and simulation of photobioreactors with computational fluid dynamics: a comprehensive review, Energies 15 (11) (2022) 3966. [92] W.J. Gu, E. Theau, A.W. Anderson, D.F. Fletcher, J.M. Kavanagh, D.D. McClure, A modelling workflow for quantification of photobioreactor performance, Chem. Eng. J. 477 (2023) 147032. [93] Y.S. MSc, C.A. Gomez-Perez PhD, J.P.A.R C. E, J.E. PhD, Static mixer proposal for tubular photobioreactors to reduce mixing energy consumption and enhance light-dark cycles, J. Chem. Technol. Biotechnol. 96 (1) (2021) 113-124. [94] D.S. Wagner, B. Valverde-Perez, M. Saeboe, M. Bregua de la Sotilla, J. Van Wagenen, B.F. Smets, B.G. Plosz, Towards a consensus-based biokinetic model for green microalgae - The ASM-A, Water Res. 103 (2016) 485-499. [95] C.E. de Farias Silva, R.B. de Oliveira Cerqueira, C.F. de Lima Neto, F.P. de Andrade, F. de Oliveira Carvalho, J. Tonholo, Developing a kinetic model to describe wastewater treatment by microalgae based on simultaneous carbon, nitrogen and phosphorous removal, J. Environ. Chem. Eng. 8 (3) (2020) 103792. [96] S. Shahhoseyni, L. Greco, A. Sivaram, S.S. Mansouri, A reduced-order hybrid model for photobioreactor performance and biomass prediction, Algal Res. 84 (2024) 103750. [97] E. Todisco, J. Louveau, C. Thobie, E. Dechandol, L. Herve, S. Durecu, M. Titica, J. Pruvost, A dynamic model for temperature prediction in a facade-integrated photobioreactor, Chem. Eng. Res. Des. 181 (2022) 371-383. [98] V. Ganthavee, A.P. Trzcinski, Artificial intelligence and machine learning for the optimization of pharmaceutical wastewater treatment systems: a review, Environ. Chem. Lett. 22 (5) (2024) 2293-2318. [99] E. Imamoglu, Artificial intelligence and/or machine learning algorithms in microalgae bioprocesses, Bioengineering 11 (11) (2024) 1143. [100] N.A. Ahmad Latiffi, R.M.S.R. Mohamed, A. Al-Gheethi, R.M. Tajuddin, M.M. Al-Shaibani, D.N. Vo, P.F. Rupani, Nutrients elimination from meat processing wastewater using Scenedesmus sp.; optimizations; artificial neural network and kinetics models, Environ. Technol. Innov. 26 (2022) 102535. [101] D. Saboe, H. Ghasemi, M.M. Gao, M. Samardzic, K.D. Hristovski, D. Boscovic, S.R. Burge, R.G. Burge, D.A. Hoffman, Real-time monitoring and prediction of water quality parameters and algae concentrations using microbial potentiometric sensor signals and machine learning tools, Sci. Total Environ. 764 (2021) 142876. [102] S.A. Razzak, M.S. Alam, S.M. Zakir Hossain, S.M. Rahman, Tree-based machine learning for predicting Neochloris oleoabundans biomass growth and biological nutrient removal from tertiary municipal wastewater, Chem. Eng. Res. Des. 210 (2024) 614-624. [103] S. Cheng, X. Liu, C. Pastore, L. di Bitonto, A. Li, Low-carbon wastewater treatment and resource recovery of recirculating aquaculture system by immobilized chlorella vulgaris based on machine learning optimization, Bioresour. Technol. 408 (2024) 131208. [104] E.M. Salgado, A.F. Esteves, A.L. Goncalves, J.C.M. Pires, Microalgal cultures for the remediation of wastewaters with different nitrogen to phosphorus ratios: Process modelling using artificial neural networks, Environ. Res. 231 (Pt 1) (2023) 116076. [105] R. Huang, Z.Q. Liu, B.Y. Yan, Y.Q. Li, H.R. Li, D.M. Liu, P. Wang, F.Y. Cui, W.X. Shi, Layer-by-layer assembly of high negatively charged polycarbonate membranes with robust antifouling property for microalgae harvesting, J. Membr. Sci. 595 (2020) 117488. [106] P. Sattayawat, I. Yunus, N. Noirungsee, N. Mukjang, W. Pathom-aree, J. Pekkoh, C. Pumas, Synthetic biology-based approaches for microalgal bio-removal of heavy metals from wastewater effluents, Frontiers in Environmental Science, (2021) 778260. |
| [1] | Yujing Zhao, Qilei Liu, Jian Du, Qingwei Meng, Liang Sun, Lei Zhang. High-throughput and intelligent design of potential GRK2 inhibitor candidates using deep learning and mathematical programming methods [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 11-22. |
| [2] | Qingchun Yang, Dongwen Rong, Qiwen Guo, Runjie Bao, Dawei Zhang. Ensemble learning-driven multi-objective optimization of the co-pyrolysis process of biomass and coal for high economic and environmental performance [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 23-34. |
| [3] | Ali Tarik Karagoz, Omar Alqusair, Chao Liu, Jie Li. Advances in conceptual process design: From conventional strategies to AI-assisted methods [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 60-76. |
| [4] | Dian Zhang, Bo Ouyang, Zheng-Hong Luo. Reaction process optimization based on interpretable machine learning and metaheuristic optimization algorithms [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 77-85. |
| [5] | Zhi Ma, Peng Cui, Xu Wang, Lanyu Li, Haoxiang Xu, Adrian Fisher, Daojian Cheng. The integration of artificial intelligence and high-throughput experiments: An innovative driving force in catalyst design [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 117-132. |
| [6] | Feifei Chen, Zhenyuan Xiao, Zhongfan Luo, Peng Jiang, Jingjing Chen, Yuanhui Ji, Jiahua Zhu, Xiaohua Lu, Liwen Mu. Prediction of mass transfer performance in gas-liquid stirred bioreactor using machine learning [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 211-226. |
| [7] | Zifeng Li, Xiaoping Guan, Jingchang Zhang, Qiang Guo, Qiushi Xu, Ning Yang. Bayesian optimization of operational and geometric parameters of microchannels for targeted droplet generation [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 244-253. |
| [8] | Yuan Wang, Mengyue Chen, Jingwei Tian, Weidong Zhang, Dahuan Liu. A data-driven predictive model for solubility: A case study of the NaCl-Na2SO4-H2O system [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 254-265. |
| [9] | Yaohua Huang, Huatong Zhu, Heping Wu, Lele Zhang, Hao Lu, Qiang Yang. Combined micromixing and coalescence separation for improved oil desulfurization [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 191-198. |
| [10] | Zhe Wang, Renchu He, Jian Long. A systematic data-driven modelling framework for nonlinear distillation processes incorporating data intervals clustering and new integrated learning algorithm [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 182-199. |
| [11] | Chen Fan, Xindong Wang, Gaochao Li, Jian Long. Kinetic modeling and multi-objective optimization of an industrial hydrocracking process with an improved SPEA2-PE algorithm [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 130-146. |
| [12] | Changqing Su, Wentao Jiang, Yang Guo, Guodong Yi, Zengxing Li, Huan Li. Rational molecular design of P-doped porous carbon material for the VOCs adsorption [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 155-163. |
| [13] | Mingqi Jiang, Zhuo Wang, Zhijian Sun, Jian Wang. A parallel chemical reaction optimization method based on preference-based multi-objective expected improvement [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 82-92. |
| [14] | Ting Wang, Zhongmei Li, Wenli Du. Distributed asynchronous double accelerated optimization for ethylene plant considering delays [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 245-250. |
| [15] | Juncheng Hao, Shaoqin Yin, Jingchao Yuan, Yuchao Niu, Shaofu Du, Wu Xiao, Gaohong He, Xiaobin Jiang. Advanced instrument for membrane-assisted antisolvent crystallization developed via cold model experiment analysis [J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 123-137. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
