[1] J.B. Roque, Y. Kuroda, L.T. Gottemann, R. Sarpong, Deconstructive diversification of cyclic amines, Nature 564 (7735) (2018) 244-248. [2] J. Derosa, R. Kleinmans, V.T. Tran, M.K. Karunananda, S.R. Wisniewski, M.D. Eastgate, K.M. Engle, Nickel-catalyzed 1, 2-diarylation of simple alkenyl amides, J. Am. Chem. Soc. 140 (51) (2018) 17878-17883. [3] S.D. Zhong, C. Xu, Q.F. Long, H. Zhou, J.H. Yang, J. Guo, X.Z. Wang, L.Y. Dai, Highly catalytic performance for the selective C-H bond oxidation of p-chlorotoluene over Co, Cr Co-doped OMS-2 catalyst, Chem. Eng. Sci. 302 (2025) 120789. [4] C.J. Taylor, A. Pomberger, K.C. Felton, R. Grainger, M. Barecka, T.W. Chamberlain, R.A. Bourne, C.N. Johnson, A.A. Lapkin, A brief introduction to chemical reaction optimization, Chem. Rev. 123 (6) (2023) 3089-3126. [5] M. Maiti, V.K. Srivastava, S. Shewale, R.V. Jasra, A. Chavda, S. Modi, Process parameter optimization through Design of Experiments in synthesis of high cis-polybutadiene rubber, Chem. Eng. Sci. 107 (2014) 256-265. [6] H.Y. Ma, L.X. Yang, C.Q. Yao, S.N. Zhao, F.J. Jiao, G.S. Luo, G.W. Chen, Liquid-liquid addition reaction of ethylene oxide with hydrazine hydrate in microreactors: Kinetics and process optimization, Chem. Eng. J. 497 (2024) 154511. [7] J.P. Guo, G.H. Luo, K.J. Chai, W.K. Su, A. Su, Continuous flow synthesis of N, O-dimethyl-N’-nitroisourea monitored by inline Fourier transform infrared spectroscopy: Bayesian optimization and kinetic modeling, Ind. Eng. Chem. Res. 63 (23) (2024) 10162-10171. [8] C.M. Silva, E.C. Biscaia, Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors, Comput. Chem. Eng. 27 (8-9) (2003) 1329-1344. [9] T. Charoenpanich, S. Anantawaraskul, J.B.P. Soares, Using artificial intelligence techniques to design ethylene/1-olefin copolymers, Macromol. Theory Simul. 29 (6) (2020) 2000048. [10] J.L. Chen, W.J. Xu, R.Q. Zhang, Optimization of chemical synthesis with heuristic algorithms, Phys. Chem. Chem. Phys. 25 (5) (2023) 4323-4331. [11] B. Ouyang, L.T. Zhu, Z.H. Luo, Data-driven modeling of mesoscale solids stress closures for filtered two-fluid model in gas-particle flows, AIChE. J. 67 (7) (2021) e17290. [12] Z. Yang, B.N. Lu, W. Wang, Coupling Artificial Neural Network with EMMS drag for simulation of dense fluidized beds, Chem. Eng. Sci. 246 (2021) 117003. [13] C.Z. Du, C.X. Han, Z. Yang, H. Wu, H. Luo, L. Niedzwiecki, B.N. Lu, W. Wang, Multiscale CFD simulation of an industrial diameter-transformed fluidized bed reactor with artificial neural network analysis of EMMS drag markers, Ind. Eng. Chem. Res. 61 (24) (2022) 8566-8580. [14] J.B. Zhou, D.P. Liu, M. Ye, Z.M. Liu, Data-driven prediction of minimum fluidization velocity in gas-fluidized beds using data extracted by text mining, Ind. Eng. Chem. Res. 60 (37) (2021) 13727-13739. [15] J.B. Zhou, M. Ye, Z.M. Liu, Towards a general correlation for minimum fluidization velocity in gas-fluidized beds: Based on a database mining from the literature, Chem. Eng. Sci. 251 (2022) 117455. [16] C. Wang, S.S. Li, Y. Yang, Z.L. Huang, J.Y. Sun, J.D. Wang, Y.R. Yang, Z.W. Liao, B.B. Jiang, On flow regime transition in trickle bed: Development of a novel deep-learning-assisted image analysis method, AIChE. J. 66 (2) (2020) e16833. [17] D. Zhang, B. Ouyang, Z.H. Luo, Identification of gas-solid flow regimes using convolutional neural network techniques, Powder Technol. 442 (2024) 119848. [18] T.T. Qi, G.H. Luo, H.T. Xue, F. Su, J.L. Chen, W.K. Su, K.J. Wu, A. Su, Continuous heterogeneous synthesis of hexafluoroacetone and its machine learning-assisted optimization, J. Flow Chem. 13 (3) (2023) 337-346. [19] H.W. Kim, S.W. Lee, G.S. Na, S.J. Han, S.K. Kim, J.H. Shin, H. Chang, Y.T. Kim, Reaction condition optimization for non-oxidative conversion of methane using artificial intelligence, React. Chem. Eng. 6 (2) (2021) 235-243. [20] L.T. Zhu, E.Y. Kenig, A study of methanol-to-olefins packed bed reactor performance using particle-resolved CFD and machine learning, AIChE. J. 70 (10) (2024) e18520. [21] O.S. Stamenkovic, K. Rajkovic, A.V. Velickovic, P.S. Milic, V.B. Veljkovic, Optimization of base-catalyzed ethanolysis of sunflower oil by regression and artificial neural network models, Fuel Process. Technol. 114 (2013) 101-108. [22] E. Betiku, O.R. Omilakin, S.O. Ajala, A.A. Okeleye, A.E. Taiwo, B.O. Solomon, Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: a case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis, Energy 72 (2014) 266-273. [23] M.N. Du, N.H. Liu, X. Hu, Techniques for interpretable machine learning, Commun. ACM 63 (1) (2019) 68-77. [24] C. Jiang, R. Vinuesa, R.L. Chen, J.Y. Mi, S.J. Laima, H. Li, An interpretable framework of data-driven turbulence modeling using deep neural networks, 33 (5) (2021) 055133. [25] B. Ouyang, L.T. Zhu, Z.H. Luo, Interpretable machine learning analysis and automated modeling to simulate fluid-particle flows, Particuology 80 (2023) 42-52. [26] N.P. Asri, S. Machmudah, Wahyudiono, Suprapto, K. Budikarjono, A. Roesyadi, M. Goto, Palm oil transesterification in sub- and supercritical methanol with heterogeneous base catalyst, Chem. Eng. Process. Process. Intensif. 72 (2013) 63-67. [27] F. Kusumo, A.S. Silitonga, H.H. Masjuki, H.C. Ong, J. Siswantoro, T.M.I. Mahlia, Optimization of transesterification process for Ceiba pentandra oil: a comparative study between kernel-based extreme learning machine and artificial neural networks, Energy 134 (2017) 24-34. [28] A.S. Yusuff, N.B. Ishola, A.O. Gbadamosi, T.M. Azeez, M.O. Onibonoje, An artificial intelligence approach to model and optimize biodiesel production from used cooking oil using CaO incorporated zeolite catalyst, Energy Convers. Manag. X 20 (2023) 100452. [29] R. Rodriguez-Perez, J. Bajorath, Interpretation of compound activity predictions from complex machine learning models using local approximations and shapley values, J. Med. Chem. 63 (16) (2020) 8761-8777. [30] D. Sarkar, S. Rohani, A. Jutan, Multiobjective optimization of semibatch reactive crystallization processes, AIChE. J. 53 (5) (2007) 1164-1177. [31] Z.W. Fu, Z.Y. Wang, G. Chen, Enhanced parameter estimation with improved particle swarm optimization algorithm for cell culture process modeling, AIChE. J. 70 (4) (2024) e18388. [32] M.F. Cardoso, R.L. Salcedo, S.F. de Azevedo, D. Barbosa, Optimization of reactive distillation processes with simulated annealing, Chem. Eng. Sci. 55 (21) (2000) 5059-5078. [33] S. Soltani, T. Roodbar Shojaei, N. Khanian, T. Shean Yaw Choong, N. Asim, Y. Zhao, Artificial neural network method modeling of microwave-assisted esterification of PFAD over mesoporous TiO2-ZnO catalyst, Renew. Energy 187 (2022) 760-773. |