[1] Z. Sun, Y. Xiao, J. Sietsma, H. Agterhuis, Y.A. Yang, Cleaner process for selective recovery of valuable metals from electronic waste of complex mixtures of endof-life electronic products, Environ. Sci. Technol. 49(2015) 7981-7988. [2] Z. Sun, H. Cao, X. Zhang, X. Lin, W. Zheng, G. Cao, Y. Sun, Y. Zhang, Spent leadacid battery recycling in China-A review and sustainable analyses on mass flow of lead, Waste Manag. 64(2017) 190-201. [3] Y. Hu, J. Yang, J. Hu, J. Wang, S. Liang, H. Hou, X. Wu, B. Liu, W. Yu, X. He, Leadcarbon batteries:Synthesis of nanostructured PbO@C composite derived from spent lead-acid battery for next generation Lead carbon battery, Adv. Funct. Mater. 28(2018) 1705294. [4] W. Zhang, J. Yang, X. Wu, Y. Hu, W. Yu, J. Wang, J. Dong, M. Li, S. Liang, Hu, A critical review on secondary lead recycling technology and its prospect, Renew. Sustain. Energy Rev. 61(2016) 108-122. [5] J. Hu, J. Zhang, H. Li, Y. Chen, C. Wang, A promising approach for the recovery of high value-added metals from spent lithium-ion batteries, J. Power Sources 351(2017) 192-199. [6] J. Nan, D. Han, X. Zuo, Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction, J. Power Sources 152(2005) 278-284. [7] T.C. Ling, C.S. Poon, Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar, J. Hazard. Mater. 192(2011) 451-456. [8] Z. Liu, J. Tang, B.Y. Li, Z. Wang, Trade-off between remanufacturing and recycling of WEEE and the environmental implication under the Chinese Fund Policy, J. Clean. Prod. 167(2017) 97-109. [9] Y. Batonneau, C. Bremard, L. Gengembre, J. Laureyns, M.A. Le, M.D. Le, E. Perdrix, S. Sobanska, Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters, Environ. Sci. Technol. 38(2008) 5281-5289. [10] G. Uzu, S. Sobanska, G. Sarret, J.J. Sauvain, P. Pradère, C. Dumat, Characterization of lead-recycling facility emissions at various workplaces:Major insights for sanitary risks assessment, J. Hazard. Mater. 186(2011) 1018-1027. [11] F.M. Martins, J.M.D.R. Neto, C.J.D. Cunha, Mineral phases of weathered and recent electric arc furnace dust, J. Hazard. Mater. 154(2008) 417-425. [12] X. Yang, H. Li, C. Li, S. Wang, Y. Wang, Preparation of ultrafine PbO powders with lead smelting dust, Metal Mine 32(2014) 165-171(in Chinese). [13] C.S. Chen, Y.J. Shih, Y.H. Huang, Recovery of lead from smelting fly ash of waste lead-acid battery by leaching and electrowinning, Waste Manag. 52(2016) 212-220. [14] J. Zhang, L. Yi, L. Yang, Y. Huang, W. Zhou, W. Bian, A new pre-desulphurization process of damped lead battery paste with sodium carbonate based on a "surface update" concept, Hydrometallurgy 160(2016) 123-128. [15] W. Zhang, J. Yang, Y. Hu, X. He, X. Zhu, R.V. Kumar, W. Yu, J. Wang, M. Li, S. Liang, Effect of pH on desulphurization of spent lead paste via hydrometallurgical process, Hydrometallurgy 164(2016) 83-89. [16] W. Yu, J. Yang, M. Li, Y. Hu, S. Liang, J. Wang, P. Zhang, K. Xiao, H. Hou, J. Hu, R. V. Kumar, A facile lead acetate conversion process for synthesis of high-purity alpha-lead oxide derived from spent lead-acid batteries, J. Chem. Technol. Biotechnol. 1(2019) 88-97. [17] R. Torres, G.T. Lapidus, Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions, Waste Manag. 60(2017) 561-568. [18] R. Zárate-Gutiérrez, G.T. Lapidus, Anglesite (PbSO4) leaching in citrate solutions, Hydrometallurgy 144-145(2014) 124-128. [19] G. Eriksson, An algorithm for the computation of aqueous multi-component, multiphase equilibria, Anal. Chim. Acta 112(1979) 375-383. [20] J. Pan, C. Zhang, Y. Sun, et al., A new process of lead recovery from waste leadacid batteries by electrolysis of alkaline lead oxide solution, Electrochem. Commun. 19(2012) 70-72. |