Chinese Journal of Chemical Engineering ›› 2025, Vol. 80 ›› Issue (4): 130-146.DOI: 10.1016/j.cjche.2024.12.003
Previous Articles Next Articles
Chen Fan, Xindong Wang, Gaochao Li, Jian Long
Received:
2024-09-14
Revised:
2024-12-03
Accepted:
2024-12-15
Online:
2025-02-20
Published:
2025-04-28
Contact:
Jian Long,E-mail:longjian@ecust.edu.cn
Supported by:
Chen Fan, Xindong Wang, Gaochao Li, Jian Long
通讯作者:
Jian Long,E-mail:longjian@ecust.edu.cn
基金资助:
Chen Fan, Xindong Wang, Gaochao Li, Jian Long. Kinetic modeling and multi-objective optimization of an industrial hydrocracking process with an improved SPEA2-PE algorithm[J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 130-146.
Chen Fan, Xindong Wang, Gaochao Li, Jian Long. Kinetic modeling and multi-objective optimization of an industrial hydrocracking process with an improved SPEA2-PE algorithm[J]. 中国化学工程学报, 2025, 80(4): 130-146.
[1] W.M. Zhong, C. Qiao, X. Peng, Z. Li, C. Fan, F. Qian, Operation optimization of hydrocracking process based on Kriging surrogate model, Contr. Eng. Pract. 85 (2019) 34-40. [2] F.A.N. Fernandes, U.M. Teles, Modeling and optimization of Fischer-Tropsch products hydrocracking, Fuel Process. Technol. 88 (2) (2007) 207-214. [3] D.H. Oh, D. Adams, N.D. Vo, D.Q. Gbadago, C.H. Lee, M. Oh, Actor-critic reinforcement learning to estimate the optimal operating conditions of the hydrocracking process, Comput. Chem. Eng. 149 (2021) 107280. [4] N.I. Najafabadi, G. Chattopadhyaya, K.J. Smith, Experimental evidence for hydrogen spillover during hydrocracking in a membrane reactor, Appl. Catal. A Gen. 235 (1-2) (2002) 47-60. [5] K. Basak, M. Sau, U. Manna, R.P. Verma, Industrial hydrocracker model based on novel continuum lumping approach for optimization in petroleum refinery, Catal. Today 98 (1-2) (2004) 253-264. [6] H. Harode, M. Ramteke, Axial dispersion modeling of industrial hydrocracking unit and its multiobjective optimization, Chem. Eng. Res. Des. 121 (2017) 57-68. [7] A.M. Zhou, B.Y. Qu, H. Li, S.Z. Zhao, P.N. Suganthan, Q.F. Zhang, Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm Evol. Comput. 1 (1) (2011) 32-49. [8] A. Trivedi, D. Srinivasan, K. Sanyal, A. Ghosh, A survey of multiobjective evolutionary algorithms based on decomposition, IEEE Trans. Evol. Comput. 21 (3) (2017) 440-462. [9] R. Cheng, C. He, Y.C. Jin, X. Yao, Model-based evolutionary algorithms: A short survey, Complex Intell. Syst. 4 (4) (2018) 283-292. [10] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197. [11] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Proceedings of the EUROGEN'2001. Athens. Greece, 2001. [12] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2014) 577-601. [13] H.D. Wang, Q.F. Zhang, L.C. Jiao, X. Yao, Regularity model for noisy multiobjective optimization, IEEE Trans. Cybern. 46 (9) (2016) 1997-2009. [14] F.W. Ge, K. Li, Y. Han, Solving interval many-objective optimization problems by combination of NSGA-III and a local fruit fly optimization algorithm, Appl. Soft Comput. 114 (2022) 108096. [15] V.K. Maurya, S.J. Nanda, Time-varying multi-objective smart home appliances scheduling using fuzzy adaptive dynamic SPEA2 algorithm, Eng. Appl. Artif. Intell. 121 (2023) 105944. [16] Y. Liu, G. Yu, J. Cheng, C. Jiang, X.Z. Wang, L.B. Ma, Transferable preference learning assist multi-objective decision analysis for hydrocracking, In:2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS). Tianjin, China. IEEE, 2023. [17] B. Chachuat, B. Srinivasan, D. Bonvin, Adaptation strategies for real-time optimization, Comput. Chem. Eng. 33 (10) (2009) 1557-1567. [18] X. Zhang, Y.Y. Zou, S.Y. Li, S.H. Xu, A weighted auto regressive LSTM based approach for chemical processes modeling, Neurocomputing 367 (2019) 64-74. [19] K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space, Complex Syst. 9 (1994) 1-34. [20] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: A review from the swarm engineering perspective, Swarm Intell. 7 (1) (2013) 1-41. [21] C. Igel, N. Hansen, S. Roth, Covariance matrix adaptation for multi-objective optimization, Evol. Comput. 15 (1) (2007) 1-28. [22] Y.L. Li, Z.H. Zhan, Y.J. Gong, W.N. Chen, J. Zhang, Y. Li, Differential evolution with an evolution path: A DEEP evolutionary algorithm, IEEE Trans. Cybern. 45 (9) (2015) 1798-1810. [23] Z. Li, K.Y. Wang, C.X. Xue, H.T. Li, Y. Todo, Z.Y. Lei, S.C. Gao, Differential evolution with ring sub-population architecture for optimization, Knowl. Based Syst. 305 (2024) 112590. [24] X.L. Han, Y. Xue, Z.H. Wang, Y. Zhang, A. Muravev, M. Gabbouj, SaDENAS: A self-adaptive differential evolution algorithm for neural architecture search, Swarm Evol. Comput. 91 (2024) 101736. [25] D. Cong, C.J. Shi, Y.F. Cui, Y.M. Han, Z.Q. Geng, Novel competing evolutionary membrane algorithm based on multiple reference points for multi-objective optimization of ethylene cracking processes, Chemom. Intell. Lab. Syst. 217 (2021) 104389. [26] X.T. Wang, Z.Q. Geng, L.C. Chen, Y.M. Han, Improved dragonfly optimization algorithm based on quantum behavior for multi-objective optimization of ethylene cracking furnace, Swarm Evol. Comput. 88 (2024) 101607. [27] D. Jiang, T. Peng, Z.Q. Bu, J.Y. Fu, G. Lin, W.Q. Zhang, Optimization and benefit analysis of the supply chain for sweet sorghum bioenergy production in China, Innov. Energy 1 (3) (2024) 100038. [28] W.J. Song, W. Du, C. Fan, W.M. Zhong, F. Qian, A novel path-based reproduction operator for multi-objective optimization, Swarm Evol. Comput. 59 (2020) 100741. [29] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evol. Comput. 9 (2) (2001) 159-195. [30] S.Y. Ivanov, A.K. Ray, Multiobjective optimization of industrial petroleum processing units using genetic algorithms, Procedia Chem. 10 (2014) 7-14. [31] N. Bhutani, G.P. Rangaiah, A.K. Ray, First-principles, data-based, and hybrid modeling and optimization of an industrial hydrocracking unit, Ind. Eng. Chem. Res. 45 (23) (2006) 7807-7816. [32] H. Zhou, J.X. Lu, Z.K. Cao, J. Shi, M. Pan, W. Li, Q.Y. Jiang, Modeling and optimization of an industrial hydrocracking unit to improve the yield of diesel or kerosene, Fuel 90 (12) (2011) 3521-3530. [33] S. Sadighi, A. Ahmad, An optimisation approach for increasing the profit of a commercial VGO hydrocracking process, Can. J. Chem. Eng. 91 (6) (2013) 1077-1091. [34] N. Bhutani, A.K. Ray, G.P. Rangaiah, Modeling, simulation, and multi-objective optimization of an industrial hydrocracking unit, Ind. Eng. Chem. Res. 45 (4) (2006) 1354-1372. [35] Z.F. Chen, Y.R. Zhou, X.R. Zhao, Y. Xiang, J.H. Wang, A historical solutions based evolution operator for decomposition-based many-objective optimization, Swarm Evol. Comput. 41 (2018) 167-189. [36] W.X. Wang, K.S. Li, X.Z. Tao, F.H. Gu, An improved MOEA/D algorithm with an adaptive evolutionary strategy, Inf. Sci. 539 (2020) 1-15. [37] Z.Y. Yan, Y.Y. Tan, B. Wang, L. Liu, H.X. Zhang, A dual-operator strategy for a multiobjective evolutionary algorithm based on decomposition, Knowl. Based Syst. 240 (2022) 108141. [38] S. Das, P.N. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE Trans. Evol. Comput. 15 (1) (2010) 4-31. [39] A. Elkilani, M. Fahim, Six-lump hydrocracking model for maximizing aviation turbine kerosene, petrol sci technol 33 (2) (2015) 237-244. [40] C.J. Calderon, J. Ancheyta, Modeling, simulation, and parametric sensitivity analysis of a commercial slurry-phase reactor for heavy oil hydrocracking, Fuel 244 (2019) 258-268. [41] W. Song, W. Zhong, M. Yang, W. Du, F.J.C.e.t. Qian, A new lumped kinetic model of an industrial hydrocracking process, Chem. Eng. Trans. 61 (2017) 673-678. [42] Q.Y. Li, Q.Y. Jiang, Z.K. Cao, L.J. Ai, Y.Q. Zhang, Modeling and simulation for the hydrocracking reactor, 2008 27th Chinese Control Conference. July 16-18, 2008, Kunming. IEEE, (2008) 204-208. [43] N. Hansen, S.D. Muller, P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol. Comput. 11 (1) (2003) 1-18. [44] X. Tong, B. Yuan, B. Li, Model complex control CMA-ES, Swarm Evol. Comput. 50 (2019) 100558. [45] B. Karmakar, A. Kumar, R. Mallipeddi, D.G. Lee, CMA-ES with exponential based multiplicative covariance matrix adaptation for global optimization, Swarm Evol. Comput. 79 (2023) 101296. [46] O.S. Ajani, A. Kumar, R. Mallipeddi, Covariance matrix adaptation evolution strategy based on correlated evolution paths with application to reinforcement learning, Expert Syst. Appl. 246 (2024) 123289. [47] N. Ozcelikkan, G. Tuzkaya, C. Alabas-Uslu, B. Sennaroglu, A multi-objective agile project planning model and a comparative meta-heuristic approach, Inf. Softw. Technol. 151 (2022) 107023. [48] Y. Tian, R. Cheng, X.Y. Zhang, Y.C. Jin, Techniques for accelerating multi-objective evolutionary algorithms in PlatEMO. In:2020 IEEE Congress on Evolutionary Computation (CEC). Glasgow, United Kingdom. IEEE, 2020. [49] Y. Tian, X.Y. Zhang, R. Cheng, Y.C. Jin, A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric, In:2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, BC, Canada. IEEE, 2016. |
[1] | Dechang Cheng, Zhihong Ma, Ziyang Liu, Xiaohui Liu, Tao Liu, Weizhen Sun, Ling Zhao. Experiments and kinetic modeling of the sorbitol dehydration to isosorbide catalyzed by sulfuric acid under conditions of non-constant volume [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 281-289. |
[2] | Huashuai Wu, Gang Wang, Yong Yang, Yongwang Li. Modeling analysis of cobalt-based Fischer-Tropsch catalyst particles [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 82-92. |
[3] | Shen Li, Yin-Ning Zhou, Zhong-Xin Liu, Zheng-Hong Luo. Effect of solvent on the initiation mechanism of living anionic polymerization of styrene: A computational study [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 135-142. |
[4] | Shuaishuai Zhang, Yuanbo Liu, Tong Zheng, Da Ruan, Zhong Lan, Tingting Hao, Xuehu Ma. Energy, exergy, economic, and environmental compromising performance of dual-stage evaporation-ammonia hybrid compression–absorption refrigeration system for the cooling supply of keto-benzene dewaxing process [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 274-289. |
[5] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[6] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[7] | Yu-Gao Wang, Xiao-Chen Han, Bao Gu, Hua-Shuai Wu, Jun Shen. Insight into the green route to dimethyl succinate by direct esterification of bio-based disodium succinate using CO2 and CH3OH [J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 188-195. |
[8] | Hui Pan, Xinshuang Li, Yichao Shen, Xiang Wu, Feng Ju, Yuzhe Li, Gaosheng Wu, Bo Ai, Baoyun Xu, Hao Ling. Novel design of lubricant-type vacuum distillation process for lube base oils production from hydrocracking tail oil [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 121-132. |
[9] | Danlong Li, Yannan Liang, Hainan Wang, Ruoqian Zhou, Xiaokang Yan, Lijun Wang, Haijun Zhang. Investigation on the effects of fluid intensification based preconditioning process on the decarburization enhancement of fly ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 275-283. |
[10] | Min Wu, Juanjuan Ding, Zhaofeng Zhang, Shengping You, Wei Qi, Rongxin Su, Zhimin He. Kinetic modeling of gamma-aminobutyric acid production by Lactobacillus brevis based on pH-dependent model and rolling correction [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 352-360. |
[11] | Zhengyu Chen, Xinhui Yao, Dong Guan, Suoqi Zhao, Linzhou Zhang, Chunming Xu. Vacuum residue coking process simulation using molecular-level kinetic model coupled with vapor-liquid phase separation [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 301-310. |
[12] | Jingjing Wang, Wei Zhao, Kunpeng Song, Hongwei Xiang, Liping Zhou, Yong Yang, Yongwang Li. Computer generation of detailed reaction networks in hydrocracking of Fischer-Tropsch wax [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 342-349. |
[13] | Xiaoda Wang, Wenkai Li, Shiwei Wang, Qinglian Wang, Ling Li, Hongxing Wang, Ting Qiu. Reaction kinetics for the heterogeneously resin-catalyzed and homogeneously self-catalyzed esterification of thioglycolic acid with 2-ethyl-1-hexanol [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 111-119. |
[14] | Jiake Yang, Tongjiu Zuo, Jiangyin Lu. Effect of preparation methods on the hydrocracking performance of NiMo/Al2O3 catalysts [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 224-230. |
[15] | Lukuan Yang, Wenqi Zhong, Li Sun, Xi Chen, Yingjuan Shao. Dynamic optimization oriented modeling and nonlinear model predictive control of the wet limestone FGD system [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 832-845. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 17
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||