[1] J.B. Li, K. Liu, X.L. Han, C. Zhang, F.L. Cui, X.Q. Kong, A novel absorption-compression combined refrigeration cycle activated by engine waste heat, Energy Convers. Manag. 205 (2020) 112420. [2] M.Y. Song, L. Wang, J.F. Yuan, Z.W. Wang, X.Z. Li, K.F. Liang, Proposal and parametric study of solar absorption/dual compression hybrid refrigeration system for temperature and humidity independent control application, Energy Convers. Manag. 220 (2020) 113107. [3] N. Nazari, S. Mousavi, S. Mirjalili, Exergo-economic analysis and multi-objective multi-verse optimization of a solar/biomass-based trigeneration system using externally-fired gas turbine, organic Rankine cycle and absorption refrigeration cycle, Appl. Therm. Eng. 191 (2021) 116889. [4] S. Rech, E. Finco, A. Lazzaretto, A multicriteria approach to choose the best renewable refrigeration system for food preservation, Renew. Energy 154 (2020) 368-384. [5] W. Wu, W.X. Shi, J. Wang, B.L. Wang, X.T. Li, Experimental investigation on NH3-H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources, Appl. Energy 176 (2016) 258-271. [6] W. Wu, B.L. Wang, S. Shang, W.X. Shi, X.T. Li, Experimental investigation on NH3-H2O compression-assisted absorption heat pump (CAHP) for low temperature heating in colder conditions, Int. J. Refrig. 67 (2016) 109-124. [7] Q. Ji, Z.W. Han, X.P. Zhang, X.Q. Sun, G. Li, X.M. Li, L.Y. Yang, Study on the heating performance of absorption-compression hybrid heat pump in severe cold regions, Appl. Therm. Eng. 185 (2021) 116419. [8] X.L. Meng, D.X. Zheng, J.Z. Wang, X.R. Li, Energy saving mechanism analysis of the absorption-compression hybrid refrigeration cycle, Renew. Energy 57 (2013) 43-50. [9] J.T. Yu, Z.Y. Li, E.J. Chen, Y.R. Xu, H.K. Chen, L. Wang, Experimental assessment of solar absorption-subcooled compression hybrid cooling system, Sol. Energy 185 (2019) 245-254. [10] A. Razmi, M. Soltani, F.M. Kashkooli, L. Garousi Farshi, Energy and exergy analysis of an environmentally-friendly hybrid absorption/recompression refrigeration system, Energy Convers. Manag. 164 (2018) 59-69. [11] A.R. Razmi, A. Arabkoohsar, H. Nami, Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system, Energy 210 (2020) 118559. [12] C. Schweigler, M. Helm, T. Eckert, Flexible heat pump or chiller with hybrid water/LiBr absorption/compression cycle, Int. J. Refrig. 105 (2019) 178-187. [13] W. Su, X.S. Zhang, Thermodynamic analysis of a compression-absorption refrigeration air-conditioning system coupled with liquid desiccant dehumidification, Appl. Therm. Eng. 115 (2017) 575-585. [14] J. Wang, B.L. Wang, W. Wu, X.T. Li, W.X. Shi, Performance analysis of an absorption-compression hybrid refrigeration system recovering condensation heat for generation, Appl. Therm. Eng. 108 (2016) 54-65. [15] C. Qing, P. Gao, C.L. Zhang, Thermodynamic analysis on feasible operating region of two-stage hybrid absorption-compression heat pump cycles, Int. J. Refrig. 121 (2021) 43-50. [16] M. Dixit, A. Arora, S.C. Kaushik, Thermodynamic and thermoeconomic analyses of two stage hybrid absorption compression refrigeration system, Appl. Therm. Eng. 113 (2017) 120-131. [17] G. Angrisani, M. Canelli, C. Roselli, A. Russo, M. Sasso, F. Tariello, A small scale polygeneration system based on compression/absorption heat pump, Appl. Therm. Eng. 114 (2017) 1393-1402. [18] L.M. Liu, Z.Y. Li, Y. Jing, S.L. Lv, Energetic, economic and environmental study of cooling capacity for absorption subsystem in solar absorption-subcooled compression hybrid cooling system based on data of entire working period, Energy Convers. Manag. 167 (2018) 165-175. [19] Y.R. Xu, Z.Y. Li, H.K. Chen, S.L. Lv, Assessment and optimization of solar absorption-subcooled compression hybrid cooling system for cold storage, Appl. Therm. Eng. 180 (2020) 115886. [20] K. Salhi, M. Korichi, K.M. Ramadan, Thermodynamic and thermo-economic analysis of compression-absorption cascade refrigeration system using low-GWP HFO refrigerant powered by geothermal energy, Int. J. Refrig. 94 (2018) 214-229. [21] S. Ali Mousavi, M. Mehrpooya, A comprehensive exergy-based evaluation on cascade absorption-compression refrigeration system for low temperature applications-exergy, exergoeconomic, and exergoenvironmental assessments, J. Clean. Prod. 246 (2020) 119005. [22] M. Dixit, A. Arora, S.C. Kaushik, Thermodynamic analysis of GAX and hybrid GAX aqua-ammonia vapor absorption refrigeration systems, Int. J. Hydrog. Energy 40 (46) (2015) 16256-16265. [23] Y.Z. Chen, H.L. Hua, J.Z. Xu, J. Wang, P.D. Lund, Y.F. Han, T.H. Cheng, Energy, environmental-based cost, and solar share comparisons of a solar driven cooling and heating system with different types of building, Appl. Therm. Eng. 211 (2022) 118435. [24] S. Chen, G.M. Cui, Uniformity factor of temperature difference in heat exchanger networks, Appl. Therm. Eng. 102 (2016) 1366-1373. [25] V. Jain, D. Colorado, Thermoeconomic and feasibility analysis of novel transcritical vapor compression-absorption integrated refrigeration system, Energy Convers. Manag. 224 (2020) 113344. [26] H.A. Dhahad, H.M. Hussen, P.T. Nguyen, H. Ghaebi, M.A. Ashraf, Thermodynamic and thermoeconomic analysis of innovative integration of Kalina and absorption refrigeration cycles for simultaneously cooling and power generation, Energy Convers. Manag. 203 (2020) 112241. [27] S.S. Zhang, Y.B. Liu, Y.S. Chen, T. Zheng, Z. Lan, R.F. Wen, X.H. Ma, Low-temperature ammonia absorption refrigeration system based on the temperature difference uniformity principle: Optimization analysis, Appl. Therm. Eng. 244 (2024) 122584. [28] C. Alimonti, P. Conti, E. Soldo, Producing geothermal energy with a deep borehole heat exchanger: Exergy optimization of different applications and preliminary design criteria, Energy 220 (2021) 119679. [29] K. Seshadri, Thermal design and optimization A. bejan, G. tsatsaronis, and M. moran, Wiley interscience, john Wiley sons inc., new york (1996), Energy 21 (5) (1996) 433-434. [30] Y.F. Cui, Z.Q. Geng, Q.X. Zhu, Y.M. Han, Review: Multi-objective optimization methods and application in energy saving, Energy 125 (2017) 681-704. [31] A. Behzadi, E. Gholamian, P. Ahmadi, A. Habibollahzade, M. Ashjaee, Energy, exergy and exergoeconomic (3E) analyses and multi-objective optimization of a solar and geothermal based integrated energy system, Appl. Therm. Eng. 143 (2018) 1011-1022. [32] A. Mahmoudan, F. Esmaeilion, S. Hoseinzadeh, M. Soltani, P. Ahmadi, M. Rosen, A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization, Appl. Energy 308 (2022) 118399. |