[1] E. Bradford, A.M. Schweidtmann, A. Lapkin, Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm, J. Glob. Optim. 71 (2) (2018) 407-438. [2] B.A. Rizkin, A.S. Shkolnik, N.J. Ferraro, R.L. Hartman, Combining automated microfluidic experimentation with machine learning for efficient polymerization design, Nat. Mach. Intell. 2 (2020) 200-209. [3] V. Mdluli, S. Diluzio, J. Lewis, J.F. Kowalewski, T.U. Connell, D. Yaron, T. Kowalewski, S. Bernhard, High-throughput synthesis and screening of iridium(III) photocatalysts for the fast and chemoselective dehalogenation of aryl bromides, ACS Catal. 10 (13) (2020) 6977-6987. [4] R. Cheng, Y.C. Jin, K. Narukawa, B. Sendhoff, A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling, IEEE Trans. Evol. Comput. 19 (6) (2015) 838-856. [5] X.L. Wang, Y.C. Jin, S. Schmitt, M. Olhofer, An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization, Inf. Sci. 519 (2020) 317-331. [6] Y.C. Jin, B. Sendhoff, A systems approach to evolutionary multiobjective structural optimization and beyond, IEEE Comput. Intell. Mag. 4 (3) (2009) 62-76. [7] P.M. Murray, S.N.G. Tyler, J.D. Moseley, Beyond the numbers: charting chemical reaction space, Org. Process Res. Dev. 17 (1) (2013) 40-46. [8] C. Taylor, A. Baker, M.R. Chapman, W. Reynolds, K.E. Jolley, G. Clemens, G.E. Smith, A. Blacker, T. Chamberlain, S. Christie, B.A. Taylor, R. Bourne, Flow chemistry for process optimisation using design of experiments, J. Flow Chem. 11 (2021) 75-86. [9] V. Fath, N. Kockmann, J. Otto, T. Roder, Self-optimising processes and real-time-optimisation of organic syntheses in a microreactor system using Nelder-Mead and design of experiments, React. Chem. Eng. 5 (7) (2020) 1281-1299. [10] J. Ke, C. Gao, A.A. Folgueiras-Amador, K.E. Jolley, O. de Frutos, C. Mateos, J.A. Rincon, R.C.D. Brown, M. Poliakoff, M.W. George, Self-optimization of continuous flow electrochemical synthesis using Fourier transform infrared spectroscopy and gas chromatography, Appl. Spectrosc. 76 (1) (2022) 38-50. [11] J. Majewska, B. Michalkiewicz, Preparation of carbon nanomaterials over Ni/ZSM-5 catalyst using simplex method algorithm, Acta Phys. Pol. A 129 (1) (2016) 153-157. [12] S.A. Weissman, N.G. Anderson, Design of experiments (DoE) and process optimization. A review of recent publications, Org. Process Res. Dev. 19 (11) (2015) 1605-1633. [13] K.F. Koledina, S.N. Koledin, A.P. Karpenko, I.M. Gubaydullin, M.K. Vovdenko, Multi-objective optimization of chemical reaction conditions based on a kinetic model, J. Math. Chem. 57 (2) (2019) 484-493. [14] J.A. Selekman, J. Qiu, K. Tran, J. Stevens, V. Rosso, E. Simmons, Y. Xiao, J. Janey, High-throughput automation in chemical process development, Annu. Rev. Chem. Biomol. Eng. 8 (2017) 525-547. [15] Lindsey James M. Dixon and Jonathan S. Performance of search algorithms in the examination of chemical reaction spaces with an automated chemistry workstation, JALA J. Assoc. Lab. Autom. 9 (6) (2004) 364-374. [16] D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization of expensive black-box functions, J. Glob. Optim. 13 (4) (1998) 455-492. [17] A.M. Schweidtmann, A.D. Clayton, N. Holmes, E. Bradford, R.A. Bourne, A.A. Lapkin, Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives, Chem. Eng. J. 352 (2018) 277-282. [18] Z.P. Yao, B. Sanchez-Lengeling, N.S. Bobbitt, B.J. Bucior, S.G.H. Kumar, S.P. Collins, T. Burns, T.K. Woo, O.K. Farha, R.Q. Snurr, A. Aspuru-Guzik, Inverse design of nanoporous crystalline reticular materials with deep generative models, Nat. Mach. Intell. 3 (2021) 76-86. [19] B. Shahriari, K. Swersky, Z.Y. Wang, R.P. Adams, N. de Freitas, Taking the human out of the loop: a review of Bayesian optimization, Proc. IEEE 104 (1) (2016) 148-175. [20] B.J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J.I.M. Alvarado, J.M. Janey, R.P. Adams, A.G. Doyle, Bayesian reaction optimization as a tool for chemical synthesis, Nature 590 (2021) 89-96. [21] A.M. Overstall, D.C. Woods, K.J. Martin, Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics, Comput. Stat. Data Anal. 132 (2019) 126-142. [22] R.Z. Liang, H.Y. Hu, Y.H. Han, B.Z. Chen, Z.H. Yuan, CAPBO: a cost-aware parallelized Bayesian optimization method for chemical reaction optimization, AlChE. J. 70 (3) (2024) e18316. [23] Y.X. Ruan, S. Lin, Y.M. Mo, AROPS: a framework of automated reaction optimization with parallelized scheduling, J. Chem. Inf. Model. 63 (3) (2023) 770-781. [24] J.L. Wang, S.C. Clark, E. Liu, P.I. Frazier, Parallel Bayesian global optimization of expensive functions, Oper. Res. 68 (6) (2020) 1850-1865. [25] R.M. Khondaker, S. Gow, S. Kanza, J.G. Frey, M. Niranjan, Robustness under parameter and problem domain alterations of Bayesian optimization methods for chemical reactions, J. Cheminform. 14 (1) (2022) 59. [26] A. Sobester, S.J. Leary, A.J. Keane, A parallel updating scheme for approximating and optimizing high fidelity computer simulations, Struct. Multidiscip. Optim. 27 (5) (2004) 371-383. [27] W. Ponweiser, T. Wagner, D. Biermann, M. Vincze, Multiobjective optimization on a limited budget of evaluations using model-assisted -metric selection. Lecture Notes in Computer Science. Springer Berlin Heidelberg, (2008), pp 84-794. [28] R. Tanabe, H. Ishibuchi, A review of evolutionary multimodal multiobjective optimization, IEEE Trans. Evol. Comput. 24 (1) (2020) 193-200. [29] K.C. Felton, J.G. Rittig, A.A. Lapkin, Summit: benchmarking machine learning methods for reaction optimisation, Chemistry-Methods 1 (2) (2021) 116-122. [30] C.A. Hone, N. Holmes, G.R. Akien, R.A. Bourne, F.L. Muller, Rapid multistep kinetic model generation from transient flow data, React. Chem. Eng. 2 (2) (2017) 103-108. [31] M. Jiang, Z. Wang, X. Wang, A preference based multi-objective evolutionary algorithm based on arc-length information.In: 2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway,2024. [32] C.L.Mei, L.Yin, M.Yang, Z.L.Liao, G.H.Liu, A multi-model soft sensor development using Gaussian process regression for fermentation processes, Comput. Appl. Chem. 33(2) (2016) 1279-1285. [33] Y. Liu, Y. Liang, Z.L. Gao, Industrial polyethylene melt index prediction using ensemble manifold learning-based local model, J. Appl. Polym. Sci. 134 (29) (2017) e45094. [34] Z.W. Feng, Q.B. Zhang, Q.F. Zhang, Q.G. Tang, T. Yang, Y. Ma, A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization, J. Glob. Optim. 61 (4) (2015) 677-694. [35] G. Carla, K. Schalk, N. W. Daniel. Simple intuitive multi-objective parallelization of efficient global optimization: SIMPLE-EGO. In: Vietor T, FS, BKU,Maute, K, editor. Advances in Structural and Multidisciplinary Optimization: Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization, Schumacher: Springer, Cham,Brunswick, Germany,2017. [36] R. Cheng, Y.C. Jin, M. Olhofer, B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput. 20 (5) (2016) 773-791. [37] L. Ben Said, S. Bechikh, K. Ghedira, The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making, IEEE Trans. Evol. Comput. 14 (5) (2010) 801-818. [38] J. Molina, L.V. Santana, A.G. Hernandez-Diaz, C.A. Coello Coello, R. Caballero, G-dominance: Reference point based dominance for multiobjective metaheuristics, Eur. J. Oper. Res. 197 (2) (2009) 685-692. [39] J.R. Gardner, G. Pleiss, D. Bindel, K.Q. Weinberger, A.G. Wilson, GPyTorch: blackbox matrix-matrix Gaussian process inference with GPU acceleration, in: 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Canada, 2018. |