1 Joseph, B., Brosilow, C.B., “Inferential control of processes(1) Steady state analysis and design”, AIChE J., 124, 485-508(1978). 2 Lin, B., Recke, B., Knudsen, J.K.H., J rgensen, S.B, “A systematic approach for soft sensor development”, Comp. Chem. Eng., 31, 419-425(2007). 3 Qin, S.J., McAvoy, T.J., “Nonlinear PLS modeling using neural networks”, Comp. Chem. Eng., 16, 379-391(1992). 4 Radhakrishnan, V.R., Mohamed, A.R., “Neural networks for the identification and control of blast furnace hot metal quality”, J Process Contr., 10, 509-524(2000). 5 Kresta, J.V., Marlin, T.E., MacGregor, J.F., “Development of inferential process models using PLS”, Comp. Chem. Eng., 18, 597-611(1994). 6 Park, S., Han, C., “A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns”, Comp. Chem. Eng., 24, 871-877(2000). 7 Yan, W., Shao, H., Wang, X., “Soft sensing modeling based on support vector machine and Bayesian model selection”, Comp. Chem. Eng., 28, 1489-1498(2004). 8 Skagerberg, B., MacGrgor, J.F., Kiprissides, C., “Multivariate data analysis applied to low-density polyethylene reactors”, Chem. Int. Lab. Sys., 14, 341-356(1992). 9 Chen, S., Billings, S.A., Cowan, C.T.F., Grant, P.M., “Practical identification of NARMAX models using radial basis functions”, Int. J. Control, 52, 1327-1350(1990). 10 Ljung, L., System Identification:Theory for the User(Information and System Science Series), Prentice-Hall, New Jersey(1987). 11 Wang, X., Luo, R., Shao, H., “Designing a soft sensor for a distillation column with the fuzzy distributed radial basis function neural network”, In:Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan(1996). 12 Espinoza, P. A., Gonzalez, G. D., Casali, A., Ardiles, C., “Design of soft sensors using cluster techniques”, In:Proceedings of International Mineral Processing Congress, San Francisco, USA(1995). 13 Reilly, P., Carpani, R., “Application of statistical theory of adjustments to material Balances”, In:13th Canadian Chemical Engineering Conference, Montreal, Canada(1963). 14 Mah, R.S.H., Stanley, G., Downing, D., “Reconciliation and rectification of process flow and inventory data”, Ind. Eng. Chem. Process Des. Dev., 15, 175-183(1976). 15 Mah, R.S.H., Tamhane, A.C., “Detection of gross errors in process data”, AIChE J., 28, 828-830(1982). 16 Duda, R.O., Hart, P.E., Stork, D.G., “Pattern classification”, 2nd ed., Wiley, New York(2001). 17 Cho, H.W., “Identification of contributing variables using kernel-based discriminant modeling and reconstruction”, Expert Syst. Appl., 33, 274-285(2007). 18 Jemwa, G.T., Aldrich, C., “Kernel-based fault diagnosis on mineral processing plants”, Miner. Eng., 19, 1149-1162(2006). 19 Zhang, X., Zhao, X., Yan, W.W., Shao, H.H., “Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis”, Process Biochem., 42, 1200-1210(2007). 20 Chiang, L.H., Russell, E.L., Braatz, R.D., “Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis”, Chem. Int. Lab. Sys., 50, 243-252(2000). 21 He, Q.P., Qin, S.J., “A new fault diagnosis method using fault directions in fisher discriminant analysis”, AIChE J., 51, 555-571(2005). 22 Zhao, X., Yan, W., Shao, H., “Monitoring and fault diagnosis for batch process based on feature extract in Fisher subspace”, Chin. J. Chem. Eng., 14, 759-764(2006). 23 Sch lkopf, B., Smola, A., Müller, K.R., “Nonlinear component analysis as a kernel eigenvalue problem”, Neural Comput., 10, 1299-1319(1998). 24 Lee, J.M., Yoo, C., Choi, S.W., Vanrolleghem, P.A., Lee, I.B., “Nonlinear process monitoring using kernel principal component analysis”, Chem. Eng. Sci., 59, 223-234(2004). 25 Rosipal, R., Girolami, M., Trejo, L. J., Cichocki, A., “Kernel PCA for feature extraction and de-noising in nonlinear regression”, Neural Comput. Appl., 10, 231-243(2001). 26 Dachapak, C., Kanae, S., Yang, Z.J., Wada, K., “Kernel principal component regression in reproducing Hilbert space”, Proc ISCIE Int Symp Stoch Syst Theory Appl(Inst. Syst. Control. Inf. Eng.), 34, 213-218(2002). 27 Chiang, L.H., Russell, E.L., Braatz, R.D., Fault Detection and Diagnosis in Industrial Systems, Springer, Hong Kong(2001). 28 Lee, D.S., Lee, M.W., Woo, S.H., Kim, Y.J., Park, J.M., “Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms”, Ind. Eng. Chem. Res., 45, 4335-4344(2006). 29 Kim, K., Lee, J. M., Lee, I. B., “A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction”, Chem. Int. Lab. Sys., 79, 22-30(2005). 30 Wold, S., “Cross-validatory estimation of components in factor and principal components models”, Technometrics, 20, 397-405(1978). |