1 Mark, S.S., Crusberg, T.C., DaCunha, C.M., DiIorio, A.A., “A heavy metal biotrap for wastewater remediation using poly-γ-glutamic acid”, Biotechnol. Prog., 22, 523-531 (2006).2 Salehizadeh, H., Shojaosadati, S.A., “Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus”, Water Res., 37, 4231-4235 (2003).3 Salehizadeh, H., Shojaosadati, S.A., “Isolation and characterization of a bioflocculant produced by Bacillus firmus”, Biotechnol. Lett., 24, 35-40 (2002).4 Dearfield, K.L., Abernathy, C.O., Ottley, M.S., Brantner, J.H., Hayes, P.F., “Acrylamide: its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity”, Mutat. Res-Rev. Mutat., 195, 45-77 (1988).5 Denizli, A., Garipcan, B., Karabakan, A., Senöz, H., “Synthesis and characterization of poly(hydroxyethyl methacrylate-N-methacryloyl- (L)-glutamic acid) copolymer beads for removal of lead ions”, Mater. Sci. Eng.: C, 25, 448-454 (2005).6 Yang, W.Y., Qian, J.W., Shen, Z.Q., “A novel flocculant of Al(OH)3-polyacrylamide ionic hybrid”, J. Colloid. Interf. Sci., 273, 400-405 (2004).7 Zhang, Z.Q., Xia, S.Q., Zhang, J., “Enhanced dewatering of waste sludge with microbial flocculant TJ-F1 as a novel conditioner”, Water Res., 44, 3087-3092 (2010). 8 Zhang, X.L., Niu, H.Y., Pan, Y.Y., Shi, Y.L., Cai, Y.Q., “Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples”, Anal. Chem., 82, 2363-2371 (2010).9 Wang, L., Yang, Z.M., Gao, J.H., Xu, K.M., Gu, H.W., Zhang, B., Zhang, X.X., Xu, B., “A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood”, J. Am. Chem. Soc., 128, 13358-13359 (2006).10 Shin, S., Jang, J., “Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions”, Chem. Commun., 4230-4232 (2007).11 Zhang, D., Wei, S., Kaila, C., Su, X., Wu, J., Karki, A.B., Young, D.P., Guo, Z.H., “Carbon-stabilized iron nanoparticles for environmental remediation”, Nanoscale, 2, 917-919 (2010).12 Tokuyama, H., Hisaeda, J., Nii, S., Sakohara, S., “Removal of heavy metal ions and humic acid from aqueous solutions by co-adsorption onto thermosensitive polymers”, Sep. Purif. Technol., 71, 83-88 (2010).13 Bajaj, I., Singhal, R., “Poly (glutamic acid)—An emerging biopolymer of commercial interest”, Bioresour. Technol., 102, 5551-5561 (2011).14 Shih, I.L., Van, Y.T., “The production of poly-(γ-glutamic acid) from microorganisms and its various applications”, Bioresour. Technol., 79, 207-225 (2001).15 Bajaj, I.B., Singhal, R.S., “Flocculation properties of poly(gammaglutamic acid) produced from Bacillus subtilis isolate”, Food. Bioprocess. Tech., 4, 745-752 (2011).16 Bodnára, M., Kjøniksenb, A.L., Molnára, R.M., Hartmannc, J. F., Daróczid, L., Nyströmb, B., Borbély, J., “Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions”, J. Hazard. Mater., 153, 1185-1192 (2008).17 Shih, I.L., Van, Y.T., Yeh, L.C., Lin, H.G., Chang, Y.N., “Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties”, Bioresour. Technol., 78, 267-272 (2001).18 Yao, J., Xu, H., Wang, J., Jiang, M., Ouyang, P.K., “Removal of Cr(III), Ni(II) and Cu(II) by poly(γ-glutamic acid) from Bacillus subtilis NX-2”, J. Biomater. Sci. Polymer Edn., 18, 193-204 (2007).19 Yan, H., Zhang, J.C., You, C.X., Song, Z.W., Yu, B.W., Shen, Y., “Influences of different synthesis conditions on properties of Fe3O4 nanoparticles”, Mater. Chem. Phys., 113, 46-52 (2009).20 Cheng, F.Y., Su, C.H., Yang, Y.S., “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications”, Biomaterials, 26, 729-738 (2005).21 Inbaraj, B.S., Chen, B.H., “Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly (γ-glutamic acid)”, Bioresour. Technol., 102, 8868-8876 (2011).22 Inbaraj, B.S., Wang, J.S., Lu, J.F., Siao, F.Y., Chen, B.H., “Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid)”, Bioresour. Technol., 100, 200-207 (2009).23 Liu, X.Q., Guan, Y.P., Chen, H.H., Liu, H.Z., Axel, J.R., “Preparation and characterization of hydrophobic superparamagnetic magnetite gel”, J. Magn. Magn. Mater., 306, 248-253 (2006).24 Pearson, R.G., “Hard and soft acids and bases”, J. Am. Chem. Soc., 85, 3533-3539 (1963).25 Jing, F.L., Zong, S.Z., Gui, B.J., “Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water”, Environ. Sci. Technol., 42, 6949-6954 (2008). 26 He, L.M., Neu, M.P., Vanderberg, L.A., “Bacillus licheniformis γ-glutamyl exopolymer: physicochemical characterization and U (VI) interaction”, EnViron. Sci. Technol., 34, 1694-1701 (2000).27 Ho, G.H., Ho, T.I., Hsieh, K.H., Su, Y.C., Lin, P.Y., Yang, J., Yang, K.H., Yang, S.C., “γ-Polyglutamic acid produced by Bacillus subtilis (natto): structural characteristics, chemical properties and biological functionalities”, J. Chin. Chem. Soc., 53, 1363-1384 (2006).28 Al-Degs, Y., Ei-Barghouthi, M.A., Khraishen, I.M., Walker, G., “Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies”, Water Res., 40, 2645-2658 (2006).29 Hu, J., Chen, G.H., Lo, I.M.C., “Removal and recovery of Cr(Ⅵ) from wastewater by maghemite nanoparticles”, Water Res., 39, 4528-4536 (2005).30 Dan tas, T.N.C., Neto, A.A.D., Moura, M.C.P., Neto, E.L.B., Telemac, E.P., “Chromium adsorption by chitosan impregnated with microemulsion”, Langmuir, 17, 4256-4260 (2001).31 Babel, S., Kurniawan, T.A., “Cr(Ⅵ) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan”, Chemosphere, 54, 951-967 (2004).32 Acar, F.N., Malkoc, E., “The removal of chromium (VI) from aqueous solutions by Fagus orientalis L.”, Bioresour. Technol., 94, 13-15 (2004).33 Wang, P., Lo, I.M.C., “Synthesis of mesoporous magnetic g-Fe2O3 and its application to Cr(Ⅵ) removal from contaminated water”, Water Res., 43, 3727-3734 (2009). |