[1] A. Kumar, R. Prasad, Y.C. Sharma, Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation, Chin. J. Chem. Eng. 27(2019) 677-684. [2] S. Prabu, Electrodeposition of aluminum on needle cathode using AlCl3/Urea molten salts at low-temperature and its application to hydrogen generation, Chin. J. Chem. Eng. 28(3) (2020) 854-863. [3] J. Meng, Y. Li, A high H2 evolution rate under visible light of a CdS/TiO2@NiS catalyst due to a directional electron transfer between the phases, Chin. J. Chem. Eng. 27(2019) 544-548. [4] A.F. Dalebrook, W. Gan, M. Grasemann, S. Moret, G. Laurenczy, Hydrogen storage:Beyond conventional methods, Chem. Commun. 49(2013) 8735-8751. [5] C. Fink, L. Chen, G. Laurenczy, Homogeneous catalytic formic acid dehydrogenation in aqueous solution using ruthenium arene phosphine catalysts, Zeitschrift für anorganische und allgemeine Chemie 644(2018) 740-744. [6] D. Teichmann, W. Arlt, P. Wasserscheid, R. Freymann, A future energy supply based on liquid organic hydrogen carriers (LOHC), Energy Environ. Sci. 4(2011) 2767-2773. [7] M. Hattori, D. Shimamoto, H. Ago, M. Tsuji, AgPd@Pd/TiO2 nanocatalyst synthesis by microwave heating in aqueous solution for efficient hydrogen production from formic acid, J. Mater. Chem. A 3(2015) 10666-10670. [8] M.R. Nabid, Y. Bide, B. Etemadi, Ag@Pd nanoparticles immobilized on a nitrogen-doped graphene carbon nanotube aerogel as a superb catalyst for the dehydrogenation of formic acid, New J. Chem. 41(2017) 10773-10779. [9] W. Zhou, Z. Wei, A. Spannenberg, H. Jiao, K. Junge, H. Junge, M. Beller, Cobaltcatalyzed aqueous dehydrogenation of formic acid, Chem.-Europ. J. 25(36) (2019) 8459-8464. [10] A. Agapova, E. Alberico, A. Kammer, H. Junge, M. Beller, Catalytic dehydrogenation of formic acid with ruthenium-PNP-pincer complexes:comparing N-methylated and NH-ligands, ChemCatChem 11(2019) 1910-1914. [11] Y. Huang, X. Zhou, M. Yin, C. Liu, W. Xing, Novel PdAu@Au/C core-shell catalyst:Superior activity and selectivity in formic acid decomposition for hydrogen generation, Chem. Mater. 22(2010) 5122-5128. [12] S.J. Li, Y. Ping, J.M. Yan, H.L. Wang, M. Wu, Q. Jiang, Facile synthesis of AgAuPd/graphene with high performance for hydrogen generation from formic acid, J. Mater. Chem. A 3(2015) 14535-14538. [13] Y. Bide, M.R. Nabid, B. Etemadi, Facile synthesis and catalytic application of selenium doped graphene/CoFe2O4 for highly efficient and noble metal free dehydrogenation of formic acid, Int. J. Hydrogen Energy 41(2016) 20147-20155. [14] S.J. Li, Y.T. Zhou, X. Kang, D.X. Liu, L. Gu, Q.H. Zhang, J.M. Yan, Q. Jiang, A simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid, Adv. Mater. 31(2019) 1806781. [15] A. Chen, P. Holt-Hindle, Platinum-based nanostructured materials:synthesis, properties, and applications, Chem. Rev. 110(2010) 3767-3804. [16] K. Jiang, K. Xu, S. Zou, W.-B. Cai, B-Doped Pd catalyst:boosting roomtemperature hydrogen production from formic acid-formate solutions, J. Am. Chem. Soc. 136(2014) 4861-4864. [17] Q. Zhang, Z. Zhu, X. Zhang, P. Li, Y. Huang, X. Luo, Z. Liang, Aminefunctionalized sepiolite:Toward highly efficient palladium nanocatalyst for dehydrogenation of additive-free formic acid, Int. J. Hydrogen Energy 44(2019) 16707-16717. [18] Y.L. Qin, J. Wang, F.-Z. Meng, L.M. Wang, X.B. Zhang, Efficient PdNi and PdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature, Chem. Commun. 49(2013) 10028-10030. [19] J.M. Yan, S.J. Li, S.S. Yi, B.R. Wulan, W.T. Zheng, Q. Jiang, Anchoring and upgrading ultrafine NiPd on room-temperature-synthesized bifunctional NH2-N-rGO toward low-cost and highly efficient catalysts for selective formic acid dehydrogenation, Adv. Mater. 30(2018) 1703038. [20] M. Abbas, Y. Xue, J. Zhang, J. Chen, Ultrasound induced morphology-controlled synthesis of Au nanoparticles decorated on Fe2O3/ZrO2 catalyst and their catalytic performance in Fischer-Tropsch synthesis, Fuel Process. Technol. 187(2019) 63-72. [21] V.P. Vicentini, C. Ratnasamy, J. Braden, M.R. Purcell, M.K. Born, M.A. Logli, Iron oxide absorbent compositions, US Patent App. 15/701469, 2018. [22] H. Shokrollahi, A review of the magnetic properties, synthesis methods and applications of maghemite, J. Magn. Magn. Mater. 426(2017) 74-81. [23] C. Yu, X. Dong, L. Guo, J. Li, F. Qin, L. Zhang, J. Shi, D. Yan, Template-free preparation of mesoporous Fe2O3 and its application as absorbents, J. Phys. Chem. C 112(2008) 13378-13382. [24] F. Nador, M.A. Volpe, F. Alonso, A. Feldhoff, A. Kirschning, G. Radivoy, Copper nanoparticles supported on silica coated maghemite as versatile, magnetically recoverable and reusable catalyst for alkyne coupling and cycloaddition reactions, Appl. Catal. A 455(2013) 39-45. [25] Ö. Metin, S. Ho, C. Alp, H. Can, M. Mankin, M. Gültekin, M. Chi, S. Sun, Nano Res., 2013, 6, 10-18; (e) G, J. Chen, H.C. Ma, W.L. Xin, X.B. Li, F.Z. Jin, J.S. Wang, M.Y. Liu and Y.B. Dong, Inorg. Chem 56(2017) 654-660. [26] M. Zhang, Y. Li, Z. Yan, J. Jing, J. Xie, M. Chen, Improved catalytic activity of cobalt core-platinum shell nanoparticles supported on surface functionalized graphene for methanol electro-oxidation, Electrochim. Acta 158(2015) 81-88. [27] F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C.Y. Tsai, C.L. Wu, M.T. Wu, D.B. Shieh, Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications, Biomaterials 26(2005) 729-738. [28] K. Gopalsamy, J. Balamurugan, T.D. Thanh, N.H. Kim, D. Hui, J.H. Lee, Surfactant-free synthesis of NiPd nanoalloy/graphene bifunctional nanocomposite for fuel cell, Compos. B Eng. 114(2017) 319-327. [29] Y. Koskun, A. Şavk, B. Şen, F. Şen, Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites, Anal. Chim. Acta 1010(2018) 37-43. [30] B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Monodisperse palladium-nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane, Int. J. Hydrogen Energy 42(2017) 23276-23283. [31] H. Zhang, G. Zhu, One-step hydrothermal synthesis of magnetic Fe3O4 nanoparticles immobilized on polyamide fabric, Appl. Surf. Sci. 258(2012) 4952-4959. [32] S. Ali, S.A. Khan, J. Eastoe, S.R. Hussaini, M.A. Morsy, Z.H. Yamani, Synthesis, characterization, and relaxometry studies of hydrophilic and hydrophobic superparamagnetic Fe3O4 nanoparticles for oil reservoir applications, Colloids Surf., A 543(2018) 133-143. [33] L. Yang, X. Hua, J. Su, W. Luo, S. Chen, G. Cheng, Highly efficient hydrogen generation from formic acid-sodium formate over monodisperse AgPd nanoparticles at room temperature, Appl. Catal. B 168(2015) 423-428. [34] K. Mandal, D. Bhattacharjee, S. Dasgupta, Synthesis of nanoporous PdAg nanoalloy for hydrogen generation from formic acid at room temperature, Int. J. Hydrogen Energy 40(2015) 4786-4793. [35] Y.Y. Cai, X.H. Li, Y.N. Zhang, X. Wei, K.X. Wang, J.S. Chen, Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based mottschottky photocatalyst, Angew. Chem. Int. Ed. 52(2013) 11822-11825. [36] K. Koh, J.-E. Seo, J. Lee, A. Goswami, C. Yoon, T. Asefa, Ultrasmall palladium nanoparticles supported on amine-functionalized SBA-15 efficiently catalyze hydrogen evolution from formic acid, J. Mater. Chem. A 2(2014) 20444-20449. [37] Z.-L. Wang, Y. Ping, J.-M. Yan, H.-L. Wang, Q. Jiang, Hydrogen generation from formic acid decomposition at room temperature using a NiAuPd alloy nanocatalyst, Int. J. Hydrogen Energy 39(2014) 4850-4856. [38] Z.L. Wang, J.M. Yan, Y. Ping, H.L. Wang, W.T. Zheng, Q. Jiang, An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature, Angew. Chem. Int. Ed. 52(2013) 4406-4409. [39] X. Zhang, N. Shang, H. Shang, T. Du, X. Zhou, C. Feng, S. Gao, C. Wang, Z. Wang, Nitrogen-decorated porous carbon supported AgPd nanoparticles for boosting hydrogen generation from formic acid, Energy Technol. 7(2019) 140-145. |