[1] J. Blamey, E.J. Anthony, J. Wang, P.S. Fennell, The calcium looping cycle for largescale CO2 capture, Prog. Energy Combust. Sci. 36 (2) (2010) 260-279. [2] B.W. Wang, Y. Zheng, R. Yan, C.G. Zheng, J.A. Shao, J.R. Qiu, A new indicator for determining the fast chemical reaction stage of CaO carbonation with CO2, Asia-Pac. J. Chem. Eng. 2 (3) (2007) 197-202. [3] W.Q. Liu, B. Feng, N.W. Low, G.X. Wang, J.C. Diniz Da Costa, Calcium precursors for the production of CaO sorbents for multicycle CO2 capture, Environ. Sci. Technol. 44 (2) (2010) 841-847. [4] H. Lu, A. Khan, S.E. Pratsinis, P.G. Smirniotis, Flame-made durable doped-CaO nanosorbents for CO2 capture, Energy Fuels 23 (2) (2009) 1093-1100. [5] H. Lu, E.P. Reddy, P.G. Smirniotis, Calciumoxide based sorbents for capture of carbon dioxide at high temperatures, Ind. Eng. Chem. Res. 45 (11) (2006) 3944-3949. [6] K.O. Albrecht, K.S.Wagenbach, J.A. Satrio, B. Shanks, T.D.Wheelock, Development of a CaO-based CO2 sorbent with improved cyclic stability, Ind. Eng. Chem. Res. 47 (20) (2008) 7841-7848. [7] W.Q. Liu, B. Feng, Y.Q. Wu, G.X. Wang, J. Barry, J.C. Diniz Da Costa, Synthesis of sintering-resistant sorbents for CO2 capture, Environ. Sci. Technol. 44 (8) (2010) 3093-3097. [8] C. Luo, Y. Zheng, N. Ding, Q.L. Wu, G. Bian, C.G. Zheng, Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture, Ind. Eng. Chem. Res. 49 (22) (2010) 11778-11784. [9] Z.S. Li, N.S. Cai, Y.Y. Huang, Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent, Energy Fuels 19 (4) (2005) 1447-1452. [10] R. Pacciani, C.R. Műller, J.F. Davidson, J.S. Dennis, A.N. Hayhurst, Synthetic Ca-based solid sorbents suitable for capturing CO2 in a fluidized bed, Can. J. Chem. Eng. 86 (3) (2008) 356-366. [11] M. Aihara, T. Nagai, J. Matsushita, Y. Negishi, H. Ohya, Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/ decarbonation reaction, Appl. Energy 69 (3) (2001) 225-238. [12] S.F.Wu, Y.Q. Zhu, Behavior of CaTiO3/nano-CaO as a CO2 reactive adsorbent, Ind. Eng. Chem. Res. 49 (6) (2010) 2701-2706. [13] L.Y. Li, D.L. King, Z.M. Nie, H. Chris, Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture, Ind. Eng. Chem. Res. 48 (23) (2009) 10604-10613. [14] L.Y. Li, D.L. King, Z.M. Nie, X.H. Li, H. Chris, MgAl2O4 spinel-stabilized calcium oxide absorbents with improved durability for high-temperature CO2 capture, Energy Fuels 24 (6) (2010) 3698-3703. [15] C.S. Martavaltzi, A.A. Lemonidou, Development of new CaO based sorbent materials for CO2 removal at high temperature, MicroporousMesoporousMater. 110 (1) (2008) 119-127. [16] J. Mastin, A. Aranda, J. Meyer, New synthesis method for CaO-based synthetic sorbents with enhanced properties for high-temperature CO2-capture, Energy Procedia 4 (2011) 1184-1191. [17] K.C. Patil, S.T. Aruna, T. Mimani, Combustion synthesis: an update, Curr. Opin. Solid State Mater. Sci. 6 (6) (2002) 507-512. [18] C. Luo, Y. Zheng, N. Ding, C.G. Zheng, Enhanced cyclic stability of CO2 adsorption capacity of CaO-based sorbents using La2O3 or Ca12Al14O33 as additives, Korean J. Chem. Eng. 28 (4) (2011) 1042-1046. [19] B.W. Wang, R. Yan, D.H. Lee, Y. Zheng, H.B. Zhao, C.G. Zheng, Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol-gel combustion synthesis, J. Anal. Appl. Pyrolysis 91 (1) (2011) 105-113. [20] E.T. Santos, C. Alfonsin, A.J.S. Chambel, A.P. Soares Dias, C.I.C. Pinheiro, M.F. Ribeiro, Investigation of a stable synthetic sol-gel CaO sorbent for CO2 capture, Fuel 94 (1) (2012) 624-628. [21] K. Wang, X. Guo, P.F. Zhao, L.Q. Zhang, C.G. Zheng, CO2 capture of limestone modified by hydration-dehydration technology for carbonation/calcination looping, Chem. Eng. J. 173 (1) (2011) 158-163. [22] D. Beruto, L. Barco, A.W. Searcy, CO2-catalyzed surface area and porosity changes in high surface-area CaO aggregates, J. Am. Ceram. Soc. 67 (7) (1984) 512-516. [23] R.H. Borgwardt, Calciumoxide sintering in atmosphere containingwater and carbon dioxide, Ind. Eng. Chem. Res. 28 (4) (1989) 493-500. [24] R.H. Borgwardt, Sintering of nascent calcium oxide, Chem. Eng. Sci. 44 (1) (1989) 53-60. [25] C. Rodriguez-Navarro, E. Ruiz-Agudo, A. Luque, A.B. Rodriguez-Navarro, M. Ortega-Huertas, Thermal decomposition of calcite: mechanisms of formation and textual evolution of CaO nanocrystals, Am. Mineral. 94 (4) (2009) 578-593. [26] D.R. Glasson, Reactivity of lime and related oxides. VII crystal size variation in calcium oxide produced from limestone, J. Appl. Chem. 11 (6) (1961) 201-206. [27] Y.J. Li, C.S. Zhao, H.C. Chen, C. Liang, L.B. Duan,W. Zhou,Modified CaO-based sorbent looping cycle for CO2 mitigation, Fuel 88 (4) (2009) 697-704. [28] Y.Q. Zhu, S.F. Wu, X.Q. Wang, Nano CaO grain characteristics and growth model under calcination, Chem. Eng. J. 175 (1) (2011) 512-518. [29] D. Alvarez, J.C. Abanades, Pore size and shape effects on the recarbonation performance of calciumoxide submitted to repeated calcination/carbonation cycles, Energy Fuels 19 (1) (2005) 270-278. [30] Z.X. Feng, Y. Zheng, L. Zhang, C.G. Zheng, Research on high temperature sintering behavior of CaO sorbent used in multi-cyclic capturing, J. Eng. Thermophys. 30 (3) (2009) 537-539. [31] Z.S. Li, N.S. Cai, Y.Y. Huang, Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new Ca-based CO2 sorbent, Ind. Eng. Chem. Res. 45 (6) (2006) 1911-1917. [32] V. Manovic, E.J. Anthony, CaO-pellets supported by calcium aluminate cement for high-temperature CO2 capture, Environ. Sci. Technol. 43 (18) (2009) 7117-7122. [33] Y. Deutsch, L. Heller-Kallai, Decarbonation and recarbonation of calcites heated in CO2. Part 1. Effect of the thermal regime, Thermochim. Acta 182 (1) (1991) 77-89. [34] B. Gonzalez, M. Alonso, J.C. Abanades, Modeling of the deactivation of CaO in a carbonate loop at high temperatures of calcination, Ind. Eng. Chem. Res. 47 (23) (2008) 9256-9262. [35] Y. Wang, S.Y. Lin, Y. Suzuki, Study of limestone calcination with CO2 capture: Decomposition behavior in a CO2 atmosphere, Energy Fuels 21 (6) (2007) 3317-3321. [36] G. Grasa, J.C. Abanades, E.J. Anthony, CO2 capture capacity of CaO in long series of carbonation/calcination cycles, Ind. Eng. Chem. Res. 45 (26) (2006) 8846-8851. [37] B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. Addison-Wesley Publishing Co., 1978 [38] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60 (2) (1938) 309-319. [39] A. Tarafdar, S. Biswas, N.K. Pramanik, P. Pramanik, Synthesis of mesoporous chromium phosphate through an unconventional sol-gel route, Microporous Mesoporous Mater. 89 (1-3) (2006) 204-208. [40] E.P. Barret, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distribution in porous substrates. I. Computations from nitrogen isotherms, J. Am. Chem. Soc. 73 (1) (1953) 373-380. [41] X.X. Han, X.M. Jiang, L.J. Yu, Z.G. Cui, Change of pore structure of oil shale particles during combustion. Part 1. Evolution mechanism, Energy Fuels 20 (6) (2006) 2408-2412. [42] I.M.K. Ismail, P. Pfeifer, Fractal analysis and surface roughness of nonporous carbon fibers and carbon blacks, Langmuir 10 (5) (1994) 1532-1538. [43] L. Jia, R. Hughes, D. Lu, E.J. Anthony, I. Lau, Attrition of calcining limestones in circulating fluidized-bed systems, Ind. Eng. Chem. Res. 46 (15) (2007) 5199-5209. [44] C.L. Qin, J.J. Yin, H. An, W.Q. Liu, B. Feng, Performance of extruded particles from calciumhydroxide and cement for CO2 capture, Energy Fuels 26 (1) (2012) 154-161. [45] H.C. Chen, C.S. Zhao, Y.M. Yang, P.P. Zhang, CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation, Appl. Energy 91 (1) (2012) 334-340. [46] R. Koirala, K.R. Gunugunuri, S.E. Pratsinis, P.G. Smirniotis, Effect of zirconia doping on the structure and stability of CaO-based sorbents for CO2 capture during extended operating cycles, J. Phys. Chem. C 115 (50) (2011) 24804-24812. [47] A.L. Ortiz, D.P. Harrison, Hydrogen production using sorption-enhanced reaction, Ind. Eng. Chem. Res. 40 (23) (2001) 5102-5109. [48] J.C. Abanades, D. Alvarez, Conversion limits in the reaction of CO2 with lime, Energy Fuels 17 (2) (2003) 308-315. [49] H.R. Radfarnia, M.C. Iliuta, Development of zirconium-stabilized calcium oxide absorbent for cyclic high-temperature CO2 capture, Ind. Eng. Chem. Res. 51 (31) (2012) 10390-10398. [50] A. Shulman, E. Cleverstam, T. Mattisson, A. Lyngfelt, Manganese/iron, manganese/ nickel, and manganese/silicon oxides used in chemical-looping with oxygen uncoupling (CLOU) for combustion of methane, Energy Fuels 23 (10) (2009) 5269-5275. [51] A. Thongtha, A. Laowanidwatania, T. Bongkarn, Effect of firing temperature on phase and morphology evolution of CaZrO3 ceramics synthesized using the combustion technique, Ferroelectrics 403 (1) (2010) 3-10. [52] D. Pretis, F. Ricciardiello, O. Sbaizero, Mechanical properties of polycrystalline CaZrO3, Powder Metall. Int. 18 (6) (1986) 427-430. [53] H.C. Chen, C.S. Zhao, Development of a CaO-based sorbent with improved cyclic stability for CO2 capture in pressurized carbonation, Chem. Eng. J. 171 (1) (2011) 197-205. [54] S.R. Jain, K.C. Adiga, V.R.P. Verneker, New approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combust. Flame 40 (1) (1981) 71-79. [55] M. Edrissi, R.Norouzbeigi, Synthesis and characterization of alumina nanopowders by combustion of nitrate-amino acid gels, Mater. Sci. Poland 25 (4) (2007) 1029-1040. [56] J.J. Kingsley, K.C. Patil, A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials, Mater. Lett. 6 (11-12) (1988) 427-432. [57] F. Li, K.A. Hu, J.L. Li, D. Zhang, G. Chen, Combustion synthesis of γ-lithium aluminate by using various fuels, J. Nucl. Mater. 300 (1) (2002) 82-88. [58] A.I. Lysikov, A.N. Salanov, A.G. Okunew, Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles, Ind. Eng. Chem. Res. 46 (13) (2007) 4633-4638. [59] V. Manovic, E.J. Anthony, Thermal activation of CaO-based sorbent and self-activation during CO2 capture looping cycles, Environ. Sci. Technol. 42 (11) (2008) 4170-4174. [60] A. Venkatraman, L.T. Fan, W.P. Walawender, The influence of the temperature of calcination on the surface fractal dimensions of Ca(OH)2-derived sorbents, J. Colloid Interface Sci. 182 (2) (1996) 578-585. [61] Y.J. Li, Fractal dimension of modified calcium-based sorbent during cyclic CO2 capture at high temperature, Proc. CSEE 31 (29) (2011) 35-40. |