[1] Y. Wang, X. Xue, H. Yang, Synthesis and antimicrobial activity of boron-doped titania nano-materials, Chin. J. Chem. Eng. 22 (4) (2014) 474-479. [2] Q. Yang, Y. Liao, L. Mao, Kinetics of photocatalytic degradation of gaseous organic compounds on modified TiO2/AC composite photocatalyst, Chin. J. Chem. Eng. 20 (3) (2012) 572-576. [3] A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel, Science 311 (5761) (2006) 622-627. [4] X. Zheng, Y. Chen, R. Wu, Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge, Environ. Sci. Technol. 45 (17) (2011) 7284-7290. [5] L.K. Adams, D.Y. Lyon, P.J.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Res. 40 (19) (2006) 3527-3532. [6] V. Aruoja, H.C. Dubourguier, K. Kasemets, A. Kahru, Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata, Sci. Total Environ. 407 (4) (2009) 1461-1468. [7] P. Kocbek, K. Teskac,M.E. Kreft, J. Kristl, Toxicological aspects of long-termtreatment of Keratinocytes with ZnO and TiO2 nanoparticles, Small 6 (17) (2010) 1908-1917. [8] M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere 71 (7) (2008) 1308-1316. [9] K. Kasemets, A. Ivask, H.C. Dubourguier, A. Kahru, Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae, Toxicol. in Vitro 23 (6) (2009) 1116-1122. [10] M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Perez-Rivera, K. Hristovski, Titanium nanomaterial removal and release from wastewater treatment plants, Environ. Sci. Technol. 43 (17) (2009) 6757-6763. [11] S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts, Waste Manag. 30 (3) (2010) 504-520. [12] Y. Chen, Y. Su, X. Zheng, H. Chen, H. Yang, Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure, Water Res. 46 (14) (2012) 4379-4386. [13] M.A. Kiser,H. Ryu, H.Y. Jang, K.Hristovski, P.Westerhoff, Biosorption of nanoparticles to heterotrophic wastewater biomass, Water Res. 44 (14) (2010) 4105-4114. [14] A. Garcia, L. Delgado, J.A. Tora, E. Casals, E. Gonzalez, V. Puntes, X. Font, J. Carrera, A. Sanchez, Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment, J. Hazard. Mater. 199 (2012) 64-72. [15] A.A. Keller, H. Wang, D. Zhou, H.S. Lenihan, G. Cherr, B.J. Cardinale, R. Miller, Z. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices, Environ. Sci. Technol. 44 (6) (2010) 1962-1967. [16] USEPA Targeted National Sewage Sludge Survey Sampling and Analysis Technical Report; U.S. Environmental Protection Agency: Washington, DC; http://www.epa. gov/waterscience/biosolids/tnsss-tech.pdf. [17] L. Nyberg, R.F. Turco, L. Nies, Assessing the impact of nanomaterials on anaerobic microbial communities, Environ. Sci. Technol. 42 (6) (2008) 1938-1943. [18] Y. Zhao, Y. Chen, D. Zhang, X. Zhu, Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH, Environ. Sci. Technol. 44 (9) (2010) 3317-3323. [19] H. Yuan, Y. Chen, H. Zhang, S. Jiang, Q. Zhou, G. Gu, Improved bioproduction of shortchain fatty acids (SCFAs) from excess sludge under alkaline conditions, Environ. Sci. Technol. 40 (6) (2006) 2025-2029. [20] H. Mu, Y. Chen, Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion, Bioresour. Technol. 102 (22) (2011) 10305-10311. [21] H. Mu, Y. Chen, Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion, Water Res. 45 (17) (2011) 5612-5620. [22] M. Ledoux, F. Lamy, Determination of proteins and sulfobetaine with the folin- phenol reagent, Anal. Biochem. 157 (1) (1986) 28-31. [23] M.J. Delafontaine, H.P. Naveau, E.J. Nyns, Fluorimetricmonitoring ofmethanogenesis in anaerobic digesters, Biotechnol. Lett. 1 (1979) 71-73. [24] R.I. Amann, W.M.W. Gish, E.W. Myers, D.J. Lipman, Combination of 16S rRNAtargeted oligonucleotide probes with flowcytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol. 56 (1990) 1919-1925. [25] D.A. Stahl, B. Flesher, H.R. Mansfield, L. Montgomery, Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology, Appl. Environ. Microbiol. 54 (1988) 1079-1084. [26] M.T. Garcia, E. Campos, J. Sanchez-Leal, I. Ribosa, Effect of linear alkylbenzene sulphonates (LAS) on the anaerobic digestion of sewage sludge, Water Res. 40 (15) (2006) 2958-2964. [27] D.C. Stuckey, W.F. Owen, P.L. McCarty, G.F. Parkin, Anaerobic toxicity evaluation by batch and semi-continuous assays,Water Pollut. Control Fed. 52 (4) (1980) 720-729. [28] Y.Ge, J.P. Schimel, P.A. Holden, Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities, Environ. Sci. Technol. 45 (4) (2011) 1659-1664. [29] J.M. Worle-Knirsch, K. Pulskamp, H.F. Krug, Oops they did it again! Carbon nanotubes hoax scientists in viability assays, Nano Lett. 6 (6) (2006) 1261-1268. [30] L.K. Braydich-Stolle,N.M. Schaeublin, R.C. Murdock, J. Jiang, P. Biswas, J.J. Schlager, S.M. Hussain, Crystal structuremediates mode of cell death in TiO2 nanotoxicity, J. Nanopart. Res. 11 (6) (2009) 1361-1374. [31] N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility, Environ. Sci. Technol. 41 (24) (2007) 8484-8490. [32] C.W. Lee, S. Mahendra, K. Zodrow, D. Li, Y.C. Tsai, J. Braam, P.J.J. Alvarez, Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana, Environ. Toxicol. Chem. 29 (3) (2010) 669-675. [33] T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano 2 (10) (2008) 2121-2134. [34] S. George, S. Pokhrel, T. Xia, B. Gilbert, Z.X. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K.A. Bradley, L. Madler, A.E. Nel, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping, ACS Nano 4 (1) (2010) 15-29. [35] R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat,M.F. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett. 6 (4) (2006) 866-870. [36] I.D.S. Henriques, N.G. Love, The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins, Water Res. 41 (18) (2007) 4177-4185. [37] L.A. Luongo, X.Q. Zhang, Toxicity of carbon nanotubes to the activated sludge process, J. Hazard. Mater. 178 (1-3) (2010) 356-362. |