[1] S. Hashimoto, K. Natami, Y. Inoue, Mechanism of mixing enhancement with baffles in impeller-agitated vessel. Part I: A case study based on cross-sections of streak sheet, J. Chem. Eng. Sci. 66 (2011) 4690-4701. [2] H. Akyildiz, A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank, J. Sound Vib. 331 (2012) 41-52. [3] C. Berner, F. Durst, D.M. McEligot, Flow around baffles, J. Heat Transf. 106 (1984) 743-749. [4] S.H. Kim, N.K. Anand, Turbulent heat transfer between a series of parallel plates with surface mounted discrete heat sources, J. Heat Transf. 116 (1994) 577-587. [5] P. Dutta, S. Dutta, Effect of baffle size, perforation, and orientation on internal heat transfer enhancement, Int. J. Heat Mass Transfer 41 (1998) 3005-3013. [6] Q.S. Chen, V. Prasad, A. Chatterjee, Modeling of fluid flow and heat transfer in a hydrothermal crystal growth system: use of fluid-superposed porous layer theory, J. Heat Transf. 121 (1999) 1049-1058. [7] H. Li, M.J. Braun, Flow structure and transport mechanism in lower half heated upper half cooled enclosures in laminar flow regime, J. Heat Mass Transfer 42 (2006) 823-834. [8] J.R. Lopez, N.K. Anand, L.S. Fletcher, Heat transfer in a three-dimensional channel with baffles, Numer. Heat Transfer A Appl. 30 (1996) 189-205. [9] Z. Guo, N.K. Anand, Three-dimensional heat transfer in a channel with a baffle inthe entrance region, Numer. Heat Transfer A Appl. 31 (1) (1997) 21-35. [10] Y.T. Yang, C.Z. Hwang, Calculation of turbulent flow and heat transfer in a porousbaffled channel, Int. J. Heat Mass Transfer 46 (2003) 771-780. [11] B.M. Da Silva Miranda, N.K. Anand, Convective heat transfer in a channel with porous baffles, Numer. Heat Transfer A Appl. 46 (5) (2004) 425-452. [12] N.B. Santos, M.J.S. De Lemos, Flow and heat transfer in a parallel-plate channel with porous and solid baffles, Numer. Heat Transfer A Appl. 49 (5) (2006) 471-494. [13] K.H. Ko, N.K. Anand, Use of porous baffles to enhance heat transfer in a rectangular channel, Int. J. Heat Mass Transfer 46 (2003) 4191-4199. [14] Y.L. Tsay, J.C. Cheng, T.S. Chang, Enhancement of heat transfer from surfacemounted block heat sources in a duct with baffles, Numer. Heat Transfer A Appl. 43 (8) (2003) 827-841. [15] S. Sripattanapipat, P. Promvonge, Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles, Int. Commun. Heat Mass Transfer 36 (1) (2009) 32-38. [16] P. Promvonge, S. Sripattanapipat, S. Tamna, S. Kwankaomeng, C. Thianpong, Numerical investigation of laminar heat transfer in a square channel with 45° inclined baffles, Int. Commun. Heat Mass Transfer 37 (2) (2010) 170-177. [17] X.Y. Tang, D.S. Zhu, Experimental and numerical study on heat transfer enhancement of a rectangular channel with discontinuous crossed ribs and grooves, Chin. J. Chem. Eng. 20 (2) (2012) 220-230. [18] S. Eiamsa-ard, N. Koolnapadol, P. Promvonge, Heat transfer behavior in a square duct with tandem wire coil element insert, Chin. J. Chem. Eng. 20 (5) (2012) 863-869. [19] S. Eiamsa-ard, V. Kongkaitpaiboon, K. Nanan, Thermohydraulics of turbulent flow through heat exchanger tubes fitted with circular-rings and twisted tapes, Chin. J. Chem. Eng. 21 (6) (2013) 585-593. [20] S.V. Patankar, C.H. Liu, E.M. Sparrow, Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area, ASME J. Heat Transf. 99 (1977) 180-186. [21] P.J. Roache, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, Albuquerque, NM, 1998. [22] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980. [23] F. Incropera, P.D. Dewitt, Introduction to Heat Transfer, 5th ed. John Wiley & Sons, 2006. |