[1] J.F. Wang, C.X. Li, C. Shen, Z.H. Wang, Towards understanding the effect of electrostatic interactions on the density of ionic liquids, Fluid Phase Equilib. 279 (2009) 87-91. [2] H.Y.Wang, B. Tan, J.J.Wang, Z.Y. Li, S.J. Zhang, Anion-based pH responsive ionic liquids: design, synthesis, and reversible self-assembling structural changes in aqueous solution, Langmuir 30 (2014) 3971-3978. [3] Y.F. Hu, Z.C. Liu, C.M. Xu, X.M. Zhang, The molecular characteristics dominating the solubility of gases in ionic liquids, Chem. Soc. Rev. 40 (2011) 3802-3823. [4] X.H. Li, D.B. Zhao, Z.F. Fei, L.F. Wang, Applications of functionalized ionic liquid, Sci. China Ser. B 49 (2006) 385-401. [5] M. Armand, F. Endres, D.R. MacFarlene, H. Ohno, B. Scostati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8 (2009) 621-629. [6] M.Montanino,M. Carewska, F.Alessandrini, S. Passerini, G.B. Appetecchi,The roleof the cation aliphatic side chain length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids, Electrochim. Acta 57 (2011) 153-159. [7] K. Iwata, H. Okajima, S. Saha, H. Hamaguchi, Local structure formation in alkylimidazolium- based ionic liquids as revealed by linear and nonlinear Raman spectroscopy, Acc. Chem. Res. 40 (2007) 1174-1181. [8] L.M.N.B.F. Santos, J.N. Canongia Lopes, J.A.P. Coutinho, J.M.S.S. Esperança, L.R. Gomes, I.M. Marrucho, L.P.N.J. Rebelo, Ionic liquids: first direct determination of their cohesive energy, J. Am. Chem. Soc. 129 (2007) 284-285. [9] Y. Wang, W. Jiang, T. Yan, G.A. Voth, Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations, Acc. Chem. Res. 40 (2007) 1193-1199. [10] Z. Hu, C.J. Margulis, Room-temperature ionic liquids: Slow dynamics, viscosity, and the red edge effect, Acc. Chem. Res. 40 (2007) 1097-1105. [11] W. Xu, C.A. Angell, Solvent-free electrolytes with aqueous solution-like conductivities, Science 302 (2003) 422-425. [12] L.M. Martinez, C.A. Angell, A thermodynamic connection to the fragility of glassforming liquids, Nature 410 (2001) 633-667. [13] W. Lu, A.G. Fadeev, B.H. Qi, E. Smela, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazurkiewicz, D.Z. Zhou, G.G. Wallace, D.R. MacFarlane, S.A. Forsyth, M. Forsyth, Use of ionic liquids for π-conjugated polymer electrochemical devices, Science 297 (2002) 983-987. [14] L. Fang, Y.F. Hu, J.G. Qi, Y.F. Chen, H.R. Zhang, H.Z. Huang, The physical and electrochemical properties of the ionic liquids based on N-ethylpiperidinium cations and TFSI anion, Electrochim. Acta 133 (2014) 440-445. [15] P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, Gelation of ionic liquidbased electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells, J. Am. Chem. Soc. 125 (2003) 1166-1167. [16] A.A.H. Pádua, M.F. Costa Gomes, J.N.A. Canongia Lopes, Molecular solutes in ionic liquids: a structural perspective, Acc. Chem. Res. 40 (2007) 1087-1096. [17] J. Eastoe, S. Gold, S.E. Rogers, A. Paul, T. Welton, R.K. Heenan, I. Grillo, Ionic liquid-inoil microemulsions, J. Am. Chem. Soc. 127 (2005) 7302-7303. [18] Z.H. Hu, C.J. Margulis, Heterogeneity in a room-temperature ionic liquid: Persistent local environments and the red-edge effect, Proc.Natl. Acad. Sci. 103 (2006) 831-836. [19] A. Paul, P.K. Mandal, A. Samanta, On the optical properties of the imidazolium ionic liquids, J. Phys. Chem. B 109 (2005) 9148-9153. [20] Y.T.Wang, G.A. Voth, Unique spatial heterogeneity in ionic liquids, J. Am. Chem. Soc. 127 (2005) 12192-12193. [21] S. Shigeto, H. Hamaguchi, Evidence for mesoscopic local structures in ionic liquids: CARS signal spatial distribution of Cnmim[PF6] (n = 4, 6, 8), Chem. Phys. Lett. 427 (2006) 329-332. [22] A. Triolo, O. Russina, B. Fazio, R. Triolo, E. Di Cola, Morphology of 1-alkyl-3- methylimidazolium hexafluorophosphate room temperature ionic liquids, Chem. Phys. Lett. 457 (2008) 362-365. [23] D. Xiao, L.G. Hines Jr., S. Li, R.A. Bartsch, E.L. Quitevis, O. Russina, A. Triolo, Effect of cation symmetry and alkyl chain length on the structure and intermolecular dynamics of 1, 3-dialkylimidazolium bis (trifluoromethanesulfonyl) amide ionic liquids, J. Phys. Chem. B 113 (2009) 6426-6433. [24] O. Russina, A. Triolo, L. Gontrani, R. Caminiti, D. Xiao, L.G. Hines Jr., R.A. Bartsch, E.L. Quitevis, N. Plechkova, K.R. Seddon, Morphology and intermolecular dynamics of 1- alkyl-3-methylimidazolium bis {(trifluoromethane) sulfonyl} amide ionic liquids: structural and dynamic evidence of nanoscale segregation, J. Phys. Condens. Matter 21 (2009) 424121. [25] O. Russina, M. Beiner, C. Pappas, M. Russina, V. Arrighi, T. Unruh, C.L. Mullan, C. Hardacre, A. Triolo, Temperature dependence of the primary relaxation in 1- hexyl-3-methylimidazolium bis {(trifluoromethyl) sulfonyl} imide, J. Phys. Chem. B 113 (2009) 8469-8474. [26] S.G. Raju, S. Balasubramanian, Emergence of nanoscale order in room temperature ionic liquids: simulation of symmetric 1,3-didecylimidazolium hexafluorophosphate, J. Mater. Chem. 19 (2009) 4343-4347. [27] J.C. Lassègues, J. Grondin, R. Holomb, P. Johansson, Raman and ab initio study of the conformational isomerism in the 1-ethyl-3-methyl-imidazolium bis (trifluoromethanesulfonyl) imide ionic liquid, J. Raman Spectrosc. 38 (2007) 551-558. [28] D. Xiao, J.R. Rajian, A. Cady, S. Li, R.A. Bartsch, E.L. Quitevis, Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids, J. Phys. Chem. B 111 (2007) 4669-4677. [29] A. Triolo, O. Russina, B. Fazio, G.B. Appetecchi, M. Carewska, S. Passerini, Nanoscale organization in piperidinium-based room temperature ionic liquids, J. Chem. Phys. 130 (2009) 164521. [30] L.C. Branco, J.N. Rosa, J.J. Moura Ramos, C.A.M. Afonso, Preparation and characterization of new room temperature ionic liquids, Chem. Eur. J. 8 (2002) 3671-3677. [31] K.R. Harris, M. Kanakubo, L.A. Woolf, Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, J. Chem. Eng. Data 52 (2007) 1080-1085. [32] M.A. Abraham, L. Moens, Clean solvents, Alternative Media for Chemical Reactions and Processing, American Chemical Society, Washington DC, 2002. [33] H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation, J. Phys. Chem. B 109 (2005) 6103-6110. [34] C. Hardacre, S.E.J. McMath, M. Nieuwenhuyzen, D.T. Bowron, A.K. Soper, Liquid structure of 1, 3-dimethylimidazolium salts, J. Phys. Condens. Matter 15 (2003) S159-S166. [35] R. Holomb, A.Martinelli, I. Albinsson, J.C. Lassègues, P. Johansson, P. Jacobsson, Ionic liquid structure: The conformational isomerism in 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF4]), J. Raman Spectrosc. 39 (2008) 793-805. [36] B.L. Bhargava, R. Devane, M.L. Klein, S. Balasubramanian, Nanoscale organization in room temperature ionic liquids: a coarse grained molecular dynamics simulation study, Soft Matter 3 (2007) 1395-1400. [37] K.S. Pitzer, Electrolytes. From dilute solutions to fused salts, J. Am. Chem. Soc. 102 (1980) 2902-2906. [38] C. Wakai, A. Oleinikova, M. Ott, H.Weingärtner, How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy, J. Phys. Chem. B 109 (2005) 17028-17030. [39] S.V. Dzyuba, R.A. Bartsch, Influence of structural variations in 1-alkyl (aralkyl)-3- methylimidazolium hexafluorophosphates and bis (trifluoromethylsulfonyl) imides on physical properties of the ionic liquids, ChemPhysChem 3 (2002) 161-166. [40] A.E. Bradley, C.Hardacre, J.D. Holbrey, S. Johnston, S.E.J.McMath, M. Nieuwenhuyzen, Small-angle X-ray scattering studies of liquid crystalline 1-alkyl-3-methylimidazolium salts, Chem. Mater. 14 (2002) 629-635. [41] C.M. Gordon, J.D. Holbrey, A.R. Kennedy, K.R. Seddon, Ionic liquid crystals: hexafluorophosphate salts, J. Mater. Chem. 8 (1998) 2627-2636. [42] E. Gómez, B. González, Á. Domínguez, E. Tojo, J. Tojo, Dynamic viscosities of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several temperature, J. Chem. Eng. Data 51 (2006) 696-701. [43] J.G. Li, Y.F. Hu, S. Ling, J.Z. Zhang, Physicochemical properties of [C6mim][PF6] and [C6mim][(C2F5)3PF3] ionic liquids, J. Chem. Eng. Data 56 (2011) 3068-3072. [44] J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem. 3 (2001) 156-164. [45] P.A. Hunt,Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids? J. Phys. Chem. B 111 (2007) 4844-4853. |