[1] K.S. Lackner, A.H.A. Park, B.G. Miller, Eliminating CO2 emissions from coal-fired power plants, Academic Press, Burlington, USA, 2010.[2] S.A. Rackley, Carbon capture and storage, Elsevier Inc., Burlington, USA, 2010.[3] Z. Zhang, H. Ruan, Y. Zhou,W. Su, Y. Sun, L. Zhou, A research note on the adsorption of CO2 and N2, Chin. J. Chem. Eng. 19(2011) 733-737.[4] IEA, CO2 emissions fromfuel combustion-Highlights, International Energy Agency, Paris, France, 2014.[5] B. Metz, O. Davidson, H.D. Coninck, M. Loos, L. Meyer, IPCC special report on carbon dioxide capture and storage, Cambridge University Press, New York, USA, 2005.[6] M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata, Y. Kageyama, Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method, Energy Convers. Manag. 37(1996) 929-933.[7] R.V. Siriwardane,M.-S. Shen, E.P. Fisher, J.A. Poston, Adsorption of CO2 on molecular sieves and activated carbon, Energy Fuels 15(2001) 279-284.[8] J. Zhang, P.A. Webley, P. Xiao, Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas, Energy Convers. Manag. 49(2008) 346-356.[9] J. Zhang, P.A. Webley, Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption, Environ. Sci. Technol. 42(2008) 563-569.[10] R. Haghpanah, R. Nilam, A. Rajendran, S. Farooq, I.A. Karimi, Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture, AICHE J. 59(2013) 4735-4748.[11] Q. Wang, J. Luo, Z. Zhong, et al., CO2 capture by solid adsorbents and their applications: Current status and new trends, Energy Environ. Sci. 4(2011) 42.[12] A. Nalaparaju, M. Khurana, S. Farooq, et al., CO2 capture in cation-exchanged metal-organic frameworks: Holistic modeling from molecular simulation to process optimization, Chem. Eng. Sci. 124(2015) 70-78.[13] B.J. Maring, P.A. Webley, A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications, Int. J. Greenhouse Gas Control 15(2013) 16-31.[14] P.J.E. Harlick, F.H. Tezel, An experimental adsorbent screening study for CO2 removal from N2, Microporous Mesoporous Mater. 76(2004) 71-79.[15] K.T. Chue, J.N. Kim, Y.J. Yoo, S.H. Cho, R.T. Yang, Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption, Ind. Eng. Chem. Res. 34(1995) 591-598.[16] D. Ko, R. Siriwardane, L.T. Biegler, Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration, Ind. Eng. Chem. Res. 42(2003) 339-348.[17] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh, R. Todd, Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption, Adsorption 14(2008) 575-582.[18] D.P. Bezerra, R.S. Oliveira, R.S. Vieira, C.L. Cavalcante, D.C.S. Azevedo, Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X, Adsorption 17(2011) 235-246.[19] A. Sayari, Y. Belmabkhout, R. Serna-Guerrero, Flue gas treatment via CO2 adsorption, Chem. Eng. J. 171(2011) 760-774.[20] D. Xu, P. Xiao, G. Li, J. Zhang, P. Webley, Y. Zhai, CO2 capture by vacuum swing adsorption using F200 and sorbead WS as protective pre-layers, Chin. J. Chem. Eng. 20(2012) 849-855.[21] J. Zhang, P. Xiao, G. Li, P.A.Webley, Effect of flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by vacuum swing adsorption, Energy Procedia 1(2009) 1115-1122.[22] G. Li, P. Xiao, J. Zhang, P.A.Webley, D. Xu, The role of water on postcombustion CO2 capture by vacuum swing adsorption: Bed layering and purge to feed ratio, AICHE J. 60(2014) 673-689.[23] J. Rodríguez-Mirasol, J. Bedia, T. Cordero, J.J. Rodríguez, Influence of water vapor on the adsorption of VOCs on lignin-based activated carbons, Sep. Sci. Technol. 40(2005) 3113-3135.[24] P.A. Webley, J. He, Fast solution-adaptive finite volume method for PSA-VSA cycle simulation-1 single step simulation, Comput. Chem. Eng. 23(2000) 1701-1712.[25] P.A.Webley, J.M. He, Fast solution-adaptive finite volume method for PSA/VSA cycle simulation; 1 single step simulation, Comput. Chem. Eng. 23(2000) 3217-3224.[26] J.H. Ling, A. Ntiamoah, P. Xiao, P.A. Webley, Y.C. Zhai, Effects of feed gas concentration, temperature and process parameters on vacuum swing adsorption performance for CO2 capture, Chem. Eng. J. 265(2015) 47-57.[27] S.P. Reynolds, A.Mehrotra, A.D. Ebner, J.A. Ritter, Heavy reflux PSA cycles for CO2 recovery from flue gas: Part I. Performance evaluation, Adsorption 14(2008) 399-413.[28] E.S. Kikkinides, R.T. Yang, S.H. Cho, Concentration and recovery of CO2 from flue gas by pressure swing adsorption, Ind. Eng. Chem. Res. 32(1993) 2714-2720.[29] S.H. Cho, H.P. Jong, T.B. Hee, S.H. Sang, N.K. Jong, A 2-stage PSA process for the recovery of CO2 fromflue gas and its power consumption, Stud. Surf. Sci. Catal. 153(2004) 405-410.[30] L.Wang, Z. Liu, P. Li, J. Wang, J. Yu, CO2 capture fromflue gas by two successive VPSA units using 13XAPG, Adsorption 18(2012) 445-459.[31] S. Krishnamurthy, V.R. Rao, S. Guntuka, et al., CO2 capture from dry flue gas by vacuum swing adsorption: A pilot plant study, AIChE J. 60(2014) 1830-1842.[32] A. Agarwal, L.T. Biegler, S.E. Zitney, A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture, AIChE J. 56(2009) 1813-1828.[33] J. Merel, M. Clausse, F.Meunier, Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites, Ind. Eng. Chem. Res. 47(2008) 209-215.[34] Z. Liu, L. Wang, X.M. Kong, P. Li, J.G. Yu, A.E. Rodrigues, Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant, Ind. Eng. Chem. Res. 51(2012) 7355-7363.[35] Z. Liu, C.A. Grande, P. Li, J.G. Yu, A.E. Rodrigues, Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas, Sep. Purif. Technol. 81(2011) 307-317.[36] C.Z. Shen, Z. Liu, P. Li, J.G. Yu, Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads, Ind. Eng. Chem. Res. 51(2012) 5011-5021. |