[1] S.S. Bafna, A.M. Beall, A design of experiments study on the factors affecting variability in the melt index measurement, J. Appl. Polym. Sci. 65(1997) 277-288. [2] A. Mogilicharla, K. Mitra, S. Majumdar, Modeling of propylene polymerization with long chain branching, Chem. Eng. J. 246(2014) 175-183. [3] T.Y. Kim, Y.K. Yeo, Development of polyethylene melt index inferential model, Korean J. Chem. Eng. 27(2010) 1669-1674. [4] X.Z. Chen, D.P. Shi, X. Gao, Z.H. Luo, A fundamental CFD study of the gas-solid flow field in fluidized bed polymerization reactors, Powder Technol. 205(2011) 276-288. [5] S. Lucia, T. Finkler, S. Engell, Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty, J. Process Control 23(2013) 1306-1319. [6] A. Shamiri, M.A. Hussain, F.S. Mjalli, M.S. Shafeeyan, N. Mostoufi, Experimental and modeling analysis of propylene polymerization in a pilot-scale fluidized bed reactor, Ind. Eng. Chem. Res. 53(2014) 8694-8705. [7] P. Sarkar, S.K. Gupta, Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors, Polym. Eng. Sci. 33(1993) 368-374. [8] W. Meng, J. Li, B. Chen, H. Li, Modeling and simulation of ethylene polymerization in industrial slurry reactor series, Chin. J. Chem. Eng. 21(2013) 850-859. [9] A. Shamiri, M.A. Hussain, F.S. Mjalli, N. Mostoufi, S. Hajimolana, Dynamics and predictive control of gas phase propylene polymerization in fluidized bed reactors, Chin. J. Chem. Eng. 21(2013) 1015-1029. [10] W. Wang, X. Liu, Melt index prediction by least squares support vector machines with an adaptive mutation fruit fly optimization algorithm, Chemometr. Intell. Lab. Syst. 141(2015) 79-87. [11] J. Li, X. Liu, H. Jiang, Y. Xiao, Melt index prediction by adaptively aggregated RBF neural networks trained with novel ACO algorithm, J. Appl. Polym. Sci. 125(2012) 943-951. [12] N.M. Ramli, M. Hussain, B.M. Jan, B. Abdullah, Composition prediction of a debutanizer column using equation based artificial neural network model, Neurocomputing 131(2014) 59-76. [13] L. Ye, H. Yang, A multi-model approach for soft sensor development based on feature extraction using weighted kernel Fisher criterion, Chin. J. Chem. Eng. 22(2014) 146-152. [14] Z. Cong, Y. Hao, Consistency and asymptotic property of a weighted least squares method for networked control systems, Chin. J. Chem. Eng. 22(2014) 754-761. [15] I.S. Han,C.Han, C.B. Chung, Melt index modelingwith support vector machines, partial least squares, and artificial neural networks, J. Appl. Polym. Sci. 95(2005) 967-974. [16] J. Zhang, Q.B. Jin, Y.M. Xu, Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks, Chem. Eng. Technol. 29(2006) 442-448. [17] J. Gonzaga, L. Meleiro, C. Kiang, R. Maciel Filho, ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process, Comput. Chem. Eng. 33(2009) 43-49. [18] J. Shi, X. Liu, Melt index prediction by weighted least squares support vector machines, J. Appl. Polym. Sci. 101(2006) 285-289. [19] H. Jiang, Y. Xiao, J. Li, X. Liu, Prediction of the melt index based on the relevance vector machine with modified particle swarm optimization, Chem. Eng. Technol. 35(2012) 819-826. [20] M. Zhang, X. Liu, A soft sensor based on adaptive fuzzy neural network and support vector regression for industrial melt index prediction, Chemometr. Intell. Lab. Syst. 126(2013) 83-90. [21] F. Ahmed, L.H. Kim, Y.K. Yeo, Statistical data modeling based on partial least squares:Application to melt index predictions in high density polyethylene processes to achieve energy-saving operation, Korean J. Chem. Eng. 30(2013) 11-19. [22] Z. Zhang, T. Wang, X. Liu, Melt index prediction by aggregated RBF neural networks trained with chaotic theory, Neurocomputing 131(2014) 368-376. [23] G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine:Theory and applications, Neurocomputing 70(2006) 489-501. [24] G.-B. Huang, An insight into extreme learning machines:Random neurons, random features and kernels, Cogn. Comput. 6(2014) 376-390. [25] G.-B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification, IEEE Trans. Syst., Man Cybern. B Cybern. 42(2012) 513-529. [26] D. Wang, M. Alhamdoosh, Evolutionary extreme learning machine ensembles with size control, Neurocomputing 102(2013) 98-110. [27] R.C. Deo, M. Şahin, Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia, Atmos. Res. 153(2015) 512-525. [28] S. Li, P. Wang, L. Goel, Short-term load forecasting by wavelet transform and evolutionary extreme learning machine, Electr. Power Syst. Res. 122(2015) 96-103. [29] Q.Y. Zhu, A.K. Qin, P.N. Suganthan, G.B. Huang, Evolutionary extreme learning machine, Pattern Recogn. 38(2005) 1759-1763. [30] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA:A gravitational search algorithm, Inf. Sci. 179(2009) 2232-2248. [31] J. Kennedy, W.M. Spears, Matching algorithms to problems:An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator, IEEE, New York, 1998. [32] K. Vaisakh, L.R. Srinivas, K. Meah, Genetic evolving ant direction particle swarm optimization algorithm for optimal power flow with non-smooth cost functions and statistical analysis, Appl. Soft Comput. 13(2013) 4579-4593. [33] I.C. Trelea, The particle swarm optimization algorithm:Convergence analysis and parameter selection, Inf. Process. Lett. 85(2003) 317-325. [34] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, BGSA:Binary gravitational search algorithm, Nat. Comput. 9(2010) 727-745. [35] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, Filter modeling using gravitational search algorithm, Eng. Appl. Artif. Intell. 24(2011) 117-122. [36] F. Ding, System identification-New theory and methods, Science Press, Beijing, 2013. [37] F. Ding, System identification-Performances analysis for identification methods, Science Press, Beijing, 2014. [38] S. McLoone, M.D. Brown, G. Irwin, G. Lightbody, A hybrid linear/nonlinear training algorithm for feedforward neural networks, IEEE Trans. Neural Netw. 9(1998) 669-684. [39] D. Murray_Smith, Methods for the external validation of continuous system simulation models:A review, Math. Comp. Model. Dyn. 4(1998) 5-31. [40] C. Jin, W. Guizeng, X. Bowen, Prediction of polypropylene melt index based on robust and adaptive RBF networks, Control Decis. 14(1999) 339-343. [41] K.-C. Chou, H.-B. Shen, Recent advances in developing web-servers for predicting protein attributes, Nat. Sci. 1(2009) 63-92. |