[1] W. Krenkel, Ceramic Matrix Composites:Fiber Reinforced Ceramics and their Applications, Wiley-VCH, 2008. [2] R.R. Naslain, SiC-matrix composites:nonbrittle ceramics for thermo-structural application, Int. J. Appl. Ceram. Technol. 2(2) (2005) 75-84. [3] G.L. Vignoles, Chemical vapor deposition/infiltration processes for ceramic composites, in:P. Boisse (Ed.), Advances in Composites Manufacturing and Process Design, Woodhead Publishing 2015, pp. 147-176. [4] R.Naslain,F.Langlais, R.Pailler,G.Vignoles, Processing of SiC/SiC Fibrous Composites According to CVI-Techniques, in:Advanced SiC/SiC Ceramic Composites:Developments and ApplicationsinEnergy Systems,JohnWiley & Sons, Inc., 2006(pp.19-37). [5] W.G. Zhang, K.J. Hüttinger, CVD of SiC from methyltrichlorosilane. Part II:Composition of the gas phase and the deposit, Chem. Vap. Depos. 7(4) (2001) 173-181. [6] W.G. Zhang, K.J. Hüttinger, CVD of SiC from methyltrichlorosilane. Part I:Deposition rates, Chem. Vap. Depos. 7(4) (2001) 167-172. [7] F. Langlais, C. Prebende, B. Tarride, R. Naslain, On the kinetics of the CVD of Si from SiH2Cl2/H2 and sic from CH3SiCl3/H2 in a vertical tubular hot-wall reactor, J. Phys. IV 5(50) (1989) C5-93. [8] F. Loumagne, F. Langlais, R. Naslain, Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3/H2 gas precursor, J. Cryst. Growth 155(3-4) (1995) 205-213. [9] A. Josiek, F. Langlais, Kinetics of CVD of stoichiometric and Si-excess SiC in the system MTS/H2 at medium decomposition of MTS, Chem. Vap. Depos. 2(4) (1996) 141-146. [10] Y.-J. Lee, D.-J. Choi, J.-Y. Park, G.-W. Hong, The effect of diluent gases on the growth behavior of CVD SiC films with temperature, J. Mater. Sci. 35(18) (2000) 4519-4526. [11] C.Lu,L.Cheng,C.Zhao,L.Zhang,Y.Xu,Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen, Appl. Surf. Sci. 255(17) (2009) 7495-7499. [12] C. Lu, L. Cheng, C. Zhao, L. Zhang, F. Ye, Effects of residence time and reaction conditions on the deposition of SiC from methyltrichlorosilane and hydrogen, Int. J. Appl. Ceram. Technol. 9(3) (2012) 642-649. [13] Ö. Danielsson, P. Sukkaew, L. Ojamäe, O. Kordina, E. Janzén, Shortcomings of CVD modeling of SiC today, Theor. Chem. Accounts 132(11) (2013) 1398. [14] J.Meziere,M.Ucar,E.Blanquet,M.Pons,P.Ferret,L.DiCioccio,Modelingandsimulation of SiC CVD in the horizontal hot-wall reactor concept, J. Cryst. Growth 267(3) (2004) 436-451. [15] P.K. Mollick, R. Venugopalan, D. Srivastava, CFD coupled kinetic modeling and simulation of hot wall vertical tubular reactor for deposition of SiC crystal from MTS, J. Cryst. Growth 475(2017) 97-109. [16] C. Cavallotti, F. Rossi, S. Ravasio, M. Masi, A kinetic analysis of the growth and doping kinetics of the SiC chemical vapor deposition process, Ind. Eng. Chem. Res. 53(22) (2014) 9076-9087. [17] S. Leone, O. Kordina, A. Henry, S.-i. Nishizawa, Ö. Danielsson, E. Janzén, Gas-phase modeling of chlorine-based chemical vapor deposition of silicon carbide, Cryst. Growth Des. 12(4) (2012) 1977-1984. [18] Y. Fukushima, K. Hotozuka, Y. Shimogaki, Multiscale analysis of silicon carbidechemical vapor deposition process, J. Nanosci. Nanotechnol. 11(9) (2011) 7988. [19] M.D. Allendorf, R.J. Kee, A model of silicon carbide chemical vapor deposition, J. Electrochem. Soc. 138(3) (1991) 841-852. [20] F. de Jong, M. Meyyappan, Numerical simulation of silicon carbide chemical vapor deposition, Diam. Relat. Mater. 5(2) (1996) 141-150. [21] Y. Ge, M.S. Gordon, F. Battaglia, R.O. Fox, Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 1. Thermodynamics, J. Phys. Chem. A 111(8) (2007) 1462-1474. [22] Y. Ge, M.S. Gordon, F. Battaglia, R.O. Fox, Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 2. Reaction paths and transition states, J. Phys. Chem. A 111(8) (2007) 1475-1486. [23] Y. Ge, M.S. Gordon, F. Battaglia, R.O. Fox, Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 3. Reaction rate constant calculations, J. Phys. Chem. A 114(6) (2010) 2384-2392. [24] R. Wang, R. Ma, M. Dudley, Reduction of chemical reaction mechanism for halideassisted silicon carbide epitaxial film deposition, Ind. Eng. Chem. Res. 48(8) (2009) 3860-3866. [25] A. Veneroni, M. Masi, Gas-phase and surface kinetics of epitaxial silicon carbide growth involving chlorine-containing species, Chem. Vap. Depos. 12(8-9) (2006) 562-568. [26] S. Ravasio, M. Masi, C. Cavallotti, Analysis of the gas phase reactivity of chlorosilanes, J. Phys. Chem. A 117(25) (2013) 5221-5231. [27] M. Ganz, N. Dorval, M. Lefebvre, M. Pealat, F. Loumagne, F. Langlais, In situ optical analysis of the gas phase during the deposition of silicon carbide from methyltrichlorosilane, J. Electrochem. Soc. 143(5) (1996) 1654-1661. [28] Y. Fukushima, N. Sato, Y. Funato, H. Sugiura, K. Hotozuka, T. Momose, Y. Shimogaki, Multi-scale analysis and elementary reaction simulation of SiC-CVD using CH3SiCl3/H2:I. Effect of reaction temperature, ECS J. Solid State Sci. Technol. 2(11) (2013) 492-497. [29] M.D. Allendorf, T.H. Osterheld, C.F. Melius, The decomposition of methyltrichlorosilane:Studies in a high-temperature flow reactor, MRS Online Proc. Libr. 334(1993) 105-110. [30] M.D. Allendorf, T.H. Osterheld, Modeling the GAS-phase chemistry of silicon carbide formation, MRS Online Proc. Libr. 363(1994) 39-44. [31] G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine:Theory and applications, Neurocomputing 70(1) (2006) 489-501. [32] K. Guan, H. Ren, Q. Zeng, Z. Feng, J. Wu, Z. Lu, P. Rao, Y. Cheng, Z. Gong, Y. Yu, Estimating thermal conductivities and elastic moduli of porous ceramics using a new microstructural parameter, J. Eur. Ceram. Soc. 39(2) (2019) 647-651. [33] S. Naji, A. Keivani, S. Shamshirband, U.J. Alengaram, M.Z. Jumaat, Z. Mansor, M. Lee, Estimating building energy consumption using extreme learning machine method, Energy 97(2016) 506-516. [34] A. Becker, Z. Hu, K.J. Hüttinger, A hydrogen inhibition model of carbon deposition from light hydrocarbons, Fuel 79(13) (2000) 1573-1580. [35] T.M. Besmann, B.W. Sheldon, T.S.M. III, M.D. Kaster, Depletion effects of silicon carbide deposition from methyltrichlorosilane, J. Am. Ceram. Soc. 75(10) (1992) 2899-2903. [36] G.D. Papasouliotis, S.V. Sotirchos, Hydrogen chloride effects on the CVD of silicon carbide from methyltrichlorosilane, Chem. Vap. Depos. 4(6) (1998) 235-246. [37] D. Lespiaux, F. Langlais, R. Naslain, S. Schamm, J. Sevely, Chlorine and oxygen inhibition effects in the deposition of SiC-based ceramics from the Si-C-H-Cl system, J. Eur. Ceram. Soc. 15(1) (1995) 81-88. [38] M.T. Schulberg, M.D. Allendorf, D.A. Outka, The adsorption of hydrogen chloride on polycrystalline[beta]-silicon carbide, Surf. Sci. 341(3) (1995) 262-272. [39] A. Li, O. Deutschmann, Transient modeling of chemical vapor infiltration of methane using multi-step reaction and deposition models, Chem. Eng. Sci. 62(18) (2007) 4976-4982. [40] Ö. Danielsson, A. Henry, E. Janzén, Growth rate predictions of chemical vapor deposited silicon carbide epitaxial layers, J. Cryst. Growth 243(1) (2002) 170-184. [41] R. Wang, R. Ma, Kinetics of halide chemical vapor deposition of silicon carbide film, J. Cryst. Growth 308(1) (2007) 189-197. [42] A. Veneroni, F. Omarini, M. Masi, Silicon carbide growth mechanisms from SiH4, SiHCl3 and nC3H8, Cryst. Res. Technol. 40(10-11) (2005) 967-971. [43] A. Fiorucci, D. Moscatelli, M. Masi, Homoepitaxial silicon carbide deposition processes via chlorine routes, Surf. Coat. Technol. 201(22) (2007) 8825-8829. [44] A. Li, K. Norinaga, W. Zhang, O. Deutschmann, Modeling and simulation of materials synthesis:Chemical vapor deposition and infiltration of pyrolytic carbon, Compos. Sci. Technol. 68(5) (2008) 1097-1104. |