[1] F.A. Wang, J.Q. Zhu, H.S. Chen, W.C. Wang, Y.L. Jiang, A new model of thermal conductivity for liquids, Chem. Eng. J. 78(2000) 187-191. [2] M.R. Riazi, G.A. Enezi, S. Soleimani, Estimation of transport properties of liquids, Chem. Eng. Commun. 176(1999) 175-193. [3] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th edition McGraw-Hill, New York, 1987. [4] M. Moetamast, Viscosity and Thermal Conductivity, Masukaza yakata, Tokyo, 1975. [5] V.S. Touloukian, P.E. Liley, S.C. Saxena, Thermal Conductivity, Nonmetallic Liquids and Gases, Plenum Press, New York, 1970. [6] F.A. Wang, Introduction to Chemical Engineering Data, Chem. Ind. Press, Beijing, 1979. [7] D.T. Jamieson, Thermal conductivity of liquids, J. Chem. Eng. Data 24(1979) 244-246. [8] D.T. Jamieson, G. Cartwright, Thermal conductivity of associated liquids, J. Chem. Eng. Data 25(1980) 199-201. [9] A.S. Teja, P. Rice, A generalized corresponding states method for the prediction of the thermal conductivity of liquids and liquid mixtures, Chem. Eng. Sci. 36(1981) 417-422. [10] A.S. Teja, G. Tardieu, Prediction of the thermal conductivity of liquids and liquid mixtures including crude oil fractions, Can. J. Chem. Eng. 66(1988) 980-986. [11] J.G. Bleazard, A.S. Teja, Extension of the rough hard-sphere theory for transport properties to polar liquids, Ind. Eng. Chem. Res. 35(1996) 2453-2459. [12] D.M. Klaas, D.S. Viswanath, A correlation for the prediction of thermal conductivity of liquids, Ind. Eng. Chem. Res. 37(1998) 2064-2068. [13] Q. Lei, Y.C. Hou, R. Lin, A new correlation for thermal conductivity of liquids, Chem. Eng. Sci. 52(1997) 1243-1251. [14] Q. Lei, R. Lin, D. Ni, Thermal conductivities of some organic solvents and their binary mixtures, J. Chem. Eng. Data 42(1997) 971-974. [15] S.A. Shojaee, S. Farzam, A.Z. Hezave, M. Lashkarbolooki, S. Ayatollahi, A new correlation for estimating thermal conductivity of pure ionic liquids, Fluid Phase Equilib. 354(2013) 199-206. [16] J. Millet, J.H. Dymod, C.A. Nieto de Castro, Transport Properties of Fluids-Their Correlation, Prediction and Estimation, Cambridge University Press, New York, 2005. [17] V.G. Nemzer, L.V. Nemzer, V.V. Pugach, Thermal conductivity of poly (ethylsiloxane) liquids at high pressures, J. Chem. Eng. Data 41(1996) 848-851. [18] A.L. Horvath, Molecular Design-Chemical Structure Generation from the Properties of PureOrganic Compounds, Elsevier, New York, 1992. [19] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th ed. McGraw-Hill, New York, 1987. [20] D.S. Lakshmi, D.H.L. Prasad, A rapid estimation method for thermal conductivity of pure liquids, Chem. Eng. J. 48(1992) 211-214. [21] P.M. Mathias, V.S. Parekh, E.J. Miller, Prediction and correlation of the thermal conductivity of pure fluids and mixtures, including the critical region, Ind. Eng. Chem. Res. 41(2002) 989-999. [22] G. Latini, P. Pierpaoli, P. F., Dynamic viscosity and thermal onductivity prediction of refrigerants and refrigerant mixtures, International Refrigeration and Air Conditioning Conference 1992, pp. 489-498. [23] M. Nagvekar, T.E. Daubert, A group contribution method for liquid thermal conductivity, Ind. Eng. Chem. Res. 26(1987) 1362-1365. [24] S.W. Benson, J.H. Buss, Additivity rules for the estimation of molecular properties. Thermodynamic properties, J. Chem. Phys. 29(1958) 546-572. [25] S.R.S. Sastri, K.K. Rao, Quick estimating for thermal conductivity, Chem. Eng. 100(1993) 106-107. [26] J.W. Miller Jr., R.S. Gordon, C.L. Yaws, Correlation constants for chemical compounds-thermal conductivity of gas, Chem. Eng. 83(25) (1976) 153-155. [27] G. Carrera, J. Aires-de-Sousa, Estimation of melting points of pyridinium bromide ionic liquids with decision trees and neural networks, Green Chem. 7(2005) 20-27. [28] L. Jianfei, L. Weitie, C. Xiaolong, L. Jingyuan, Optimization of fermentation media for enhancing nitrite-oxidizing activity by artificial neural network coupling genetic algorithm, Chin. J. Chem. Eng. 20(2012) 950-957. [29] N. Bar, T.K. Bandyopadhyay, M.N. Biswas, S. Kumar Das, Prediction of pressure drop using artificial neural network for non-Newtonian liquid flow through piping components, J. Pet. Sci. Eng. 71(2010) 187-194. [30] M. Lashkarbolooki, Z.S. Shafipour, A.Z. Hezave, Trainable cascade-forward backpropagation network modeling of spearmint oil extraction in a packed bed using SC-CO2, J. Supercrit. Fluids 73(2013) 108-115. [31] S. Nasseh, A. Mohebbi, Z. Jeirani, A. Sarrafi, Predicting pressure drop in venturi scrubbers with artificial neural networks, J. Hazard. Mater. 143(2007) 144-149. [32] M. Lashkarbolooki, A.Z. Hezave, S. Ayatollahi, Viscosity prediction of ternary mixtures containing ILs using multi-layer perceptron artificial neural network, Fluid Phase Equilib. 326(2012) 15-20. [33] I. Jahanandish, B. Salimifard, H. Jalalifar, Predicting bottomhole pressure in vertical multiphase flowing wells using artificial neural networks, J. Pet. Sci. Eng. 75(2011) 336-342. [34] S.K. Lahiri, K.C. Ghanta, Development of an artificial neural network correlation for prediction of hold-up of slurry transport in pipelines, Chem. Eng. Sci. 63(2008) 1497-1509. [35] M. Lashkarbolooki, A.Z. Hezave, A. Babapoor, Correlation of density for binary mixtures of methanol + ionic liquids using back propagation artificial neural network, Korean J. Chem. Eng. 30(2013) 213-220. [36] F. Yousefi, Z. Amoozandeh, Statistical mechanics and artificial intelligence to model the thermodynamic properties of pure and mixture of ionic liquids, Chin. J. Chem. Eng. 24(12) (2016) 1761-1771. [37] I.J. Turias, J.M. Gutiérrez, P.L. Galindo, Modelling the effective thermal conductivity of an unidirectional composite by the use of artificial neural networks, Compos. Sci. Technol. 65(2005) 609-619. [38] S.S. Sablani, R.M. Shafiur, Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity, Food Res. Int. 36(2003) 617-623. [39] R. Eslamloueyan, M.H. Khademi, Estimation of thermal conductivity of pure gases by using artificial neural networks, Int. J. Therm. Sci. 48(2009) 1094-1101. [40] R. Boozarjomehri, F. Abdolahi, M.A. Moosavian, Characterization of basic properties for pure substances and petroleum fractions by neural network, Fluid Phase Equilib. 231(2005) 188-196. [41] A.Z. Hezave, M. Lashkarbolooki, S. Raeissi, Using artificial neural network to predict the ternary electrical conductivity of ionic liquid systems, Fluid Phase Equilib. 314(2012) 128-133. [42] H. Watanabe, H. Kato, Thermal conductivity and thermal diffusivity of twenty-nine liquids:alkenes, cyclic (alkanes, alkenes, alkadienes, aromatics), and deuterated hydrocarbons, J. Chem. Eng. Data 49(2004) 809-825. [43] H. Watanabe, Accurate measurement of the thermal conductivity and thermal diffusivity of toluene and n-heptane, Int. J. Thermophys. 18(1997) 313-325. [44] H. Watanabe, D.J. Seong, The thermal conductivity and thermal diffusivity of liquid n-alkanes:CnH2n+2 (n=5 to 10) and toluene, Int. J. Thermophys. 23(2002) 337-356. [45] H. Watanabe, Thermal conductivity and thermal diffusivity of sixteen isomers of alkanes:Cn H2n +2 (n=6 to 8), J. Chem. Eng. Data 48(2003) 124-136. [46] M. Lashkarbolooki, B. Vaferi, A. Shariati, A.Z. Hezave, Investigating vapor-liquid equilibria of binary mixtures containing supercritical or near-critical carbon dioxide and a cyclic compound using cascade neural network, Fluid Phase Equilib. 343(2013) 24-29. [47] http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html. [48] M. Lashkarbolooki, B. Vaferi, D. Mowla, Using artificial neural network to predict the pressure drop in a rotating packed bed, Sep. Sci. Technol. 47(2012) 2450-2459. [49] C.M. Rodenbush, D.S. Viswanath, F.H. Fu-hung Hsieh, A group contribution method for the prediction of thermal conductivity of liquids and its application to the Prandtl number for vegetable oils, Ind. Eng. Chem. Res. 38(1999) 4513-4519. [50] M.R. Riazi, G.A. Enezi, S. Soleimani, Application of the one-third rule in hydrocarbon and crude oil systems, Chem. Eng. Commun. 176(2007) 175-193. [51] A. Vasquez, J.G. Briano, Thermal conductivity of hydrocarbon mixtures:a perturbation approach, Ind. Eng. Chem. Res. 32(1993) 194-199. [52] V. Pachaiyappan, S.H. Ibrahim, N.R. Kuloor, Chem. Eng. 74(4) (1967) 150. [53] R. Mohammad, M.R. Riazi, A. Faghri, Thermal conductivity of liquid and vapor hydrocarbon systems:pentanes and heavier at low pressures, Ind. Eng. Chem. Process. Des. Dev. 24(1985) 398-401. |