Chinese Journal of Chemical Engineering ›› 2022, Vol. 42 ›› Issue (2): 130-150.DOI: 10.1016/j.cjche.2021.11.005
Previous Articles Next Articles
Shuang Xu, Ru-Shuai Liu, Meng-Yao Zhang, An-Hui Lu
Received:
2021-05-23
Revised:
2021-11-01
Online:
2022-03-30
Published:
2022-02-28
Contact:
An-Hui Lu,E-mail:anhuilu@dlut.edu.cn
Supported by:
Shuang Xu, Ru-Shuai Liu, Meng-Yao Zhang, An-Hui Lu
通讯作者:
An-Hui Lu,E-mail:anhuilu@dlut.edu.cn
基金资助:
Shuang Xu, Ru-Shuai Liu, Meng-Yao Zhang, An-Hui Lu. Designed synthesis of porous carbons for the separation of light hydrocarbons[J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 130-150.
Shuang Xu, Ru-Shuai Liu, Meng-Yao Zhang, An-Hui Lu. Designed synthesis of porous carbons for the separation of light hydrocarbons[J]. 中国化学工程学报, 2022, 42(2): 130-150.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.11.005
[1] | Y.Q. Huang, Y.B. Zhang, H.B. Xing, Separation of light hydrocarbons with ionic liquids:a review, Chin. J. Chem. Eng. 27 (6) (2019) 1374-1382 |
[2] | B. Hu, Y.P. Cheng, X.X. He, Z.Y. Wang, Z.N. Jiang, C.G. Wang, W. Li, L. Wang, New insights into the CH4 adsorption capacity of coal based on microscopic pore properties, Fuel 262 (2020) 116675 |
[3] | G. Bayat, R. Saghatchi, J. Azamat, A. Khataee, Separation of methane from different gas mixtures using modified silicon carbide nanosheet:Micro and macro scale numerical studies, Chin. J. Chem. Eng. 28 (5) (2020) 1268-1276 |
[4] | M.I. Khan, T. Yasmin, A. Shakoor, Technical overview of compressed natural gas (CNG) as a transportation fuel, Renew. Sustain. Energy Rev. 51 (2015) 785-797 |
[5] | R.F. Shi, D. Lv, Y.W. Chen, H.X. Wu, B.Y. Liu, Q.B. Xia, Z. Li, Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224, Sep. Purif. Technol. 207 (2018) 262-268 |
[6] | S.H. Zhang, M.K. Taylor, L.C. Jiang, H. Ren, G.S. Zhu, Light hydrocarbon separations using porous organic framework materials, Chem. Weinheim Der Bergstrasse Ger. 26 (15) (2020) 3205-3221 |
[7] | Y.X. Wang, S.B. Peh, D. Zhao, Alternatives to cryogenic distillation:advanced porous materials in adsorptive light olefin/paraffin separations, Small 15 (25) (2019) 1900058 |
[8] | J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38 (5) (2009) 1477 |
[9] | A. Ahmed, R. Babarao, R. Huang, N. Medhekar, B.D. Todd, M.R. Hill, A.W. Thornton, Porous aromatic frameworks impregnated with lithiated fullerenes for natural gas purification, J. Phys. Chem. C. 119 (17) (2015) 9347-9354 |
[10] | M.J. Prauchner, S.D.C. Oliveira, F. Rodríguez-Reinoso, Tailoring low-cost granular activated carbons intended for CO2 adsorption, Front. Chem. 8 (2020) 581133. DOI:10.3389/fchem.2020.581133 |
[11] | Y. Wu, P.-Z. Xu, J.-F. Qin, J. Yang, J.-X. Yang, Z.-M. Chen, L. Huang, Revamp and optimization of a large PSA unit for purification of hydrogen from refinery off-gases, Nat. Gas Chem. Ind. 45 (02) (2020) 51-55 |
[12] | A.V. Ozerskii, A.V. Nikitin, I.V. Sedov, I.G. Fokin, V.I. Savchenko, V.S. Arutyunov, Production of ethylene, CO, and hydrogen by oxidative cracking of oil refinery gas components, Russ. J. Appl. Chem. 91 (12) (2018) 2065-2075 |
[13] | H. Pang, L.-M. Zhang, Analysis on the advantages of dry gas recovery for ethylene production in light hydrocarbon cracking unit, Chem. Enterp. Manag. 15 (2020) 91-92 |
[14] | Y.Y. Wang, J.F. Chen, X.Q. Pang, Y.F. Liu, Z.Y. Chen, G.P. Luo, G.Q. Zhang, L.M. Huang, Faulting controls on oil and gas composition in the Yingmai 2 Oilfield, Tarim Basin, NW China, Org. Geochem. 123 (2018) 48-66 |
[15] | J.H. Zhang, L.T. Li, Q. Qin, Effects of micropore structure of activated carbons on the CH4/N2 adsorption separation and the enrichment of coal-bed methane, Clean Energy 5 (2) (2021) 329-338 |
[16] | X. Yang, Z.Y. Li, C.Z. Zhang, H.Y. Wang, E.L. Zhang, Y. Xing, P. Xiao, R.T. Yang, Y.S. Liu, P.A. Webley, Practical separation performance evaluation of coal mine methane upgrading with carbon molecular sieves, Chem. Eng. J. 367 (2019) 295-303 |
[17] | W. Dang, J.C. Zhang, X. Tang, X.L. Wei, Z.M. Li, C.H. Wang, Q. Chen, C. Liu, Investigation of gas content of organic-rich shale:A case study from lower Permian shale in southern north China basin, central China, Geosci. Front. 9 (2018) 559-575 |
[18] | H.M. Park, J.Y. Lee, K.Y. Jee, S.I. Nakao, Y.T. Lee, Hydrocarbon separation properties of a CVD-deposited ceramic membrane under single gases and binary mixed gas, Sep. Purif. Technol. 254 (2021) 117642 |
[19] | Z.T. Zhu, Y.J. Li, Cost-effective optimization design of light hydrocarbon recovery process based on exergy analysis, Appl. Therm. Eng. 163 (2019) 114433 |
[20] | L.H. Nie, S.P. Xu, Y.M. Su, S.Q. Liu, Progress of recovery of low concentration coal bed methane, Chem. Ind. Eng. Prog. (2008) 27(10)1505-1511, 1521. (in Chinese) |
[21] | T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa, E.F. May, The removal of CO2 and N2 from natural gas:a review of conventional and emerging process technologies, J. Petroleum Sci. Eng. 94-95 (2012) 123-154 |
[22] | J.S. Zhang, D.F. Li, Overview on recovery technologies of refinery dry gas, Chem. Ind. Eng. Prog. (2015) 34(9)3207-3215.(in Chinese) |
[23] | H.G. Wang, L.G. Wang, Recovery of light olefins from refinery dry-gas, Petroleum Refin. Eng. (2009) 39(12)8-11.(in Chinese) |
[24] | N. Wu, H. Xue, Comparative study on light hydrocarbon recovery and shallow cooling process of oilfield associated gas, Chem. Eng. Des. 30 (2) (2020) 6-11 |
[25] | W. Hu, Discussion on natural gas deacidification processes, Liaoning Chem. Ind. (2017) 46 (9) 915-916, 919.(in Chinese) |
[26] | X.F. Gu, R.S. Wang, B.Q. Wu, G.L. Chen, Review on natural gas denitrification process, Chem. Eng. Oil & Gas 48 (1) (2019) 12-17 |
[27] | X.Y. Chen, S. Kaliaguine, Mixed gas and pure gas transport properties of copolyimide membranes, J. Appl. Polym. Sci. 128 (1) (2013) 380-389 |
[28] | X.Q. Wang, Z.Y. Chang, L.B. Li, J.F. Yang, J.P. Li, Progress in metal-organic frameworks for efficient separation of gaseous light hydrocarbon, Chem. Ind. Eng. Prog. 39 (6) (2020) 2218-2233 |
[29] | N. Kohlheb, M. Wluka, A. Bezama, D. Thrän, A. Aurich, R.A. Müller, Environmental-economic assessment of the pressure swing adsorption biogas upgrading technology, Bioenergy Res. 14 (3) (2021) 901-909 |
[30] | M. Tagliabue, D. Farrusseng, S. Valencia, S. Aguado, U. Ravon, C. Rizzo, A. Corma, C. Mirodatos, Natural gas treating by selective adsorption:Material science and chemical engineering interplay, Chem. Eng. J. 155 (3) (2009) 553-566 |
[31] | H.R. Sant Anna, A.G. BarretoJr, F.W. TavaresJr, J.F. do NascimentoJr, Methane/nitrogen separation through pressure swing adsorption process from nitrogen-rich streams, Chem. Eng. Process.:Process. Intensif. 103 (2016) 70-79 |
[32] | W.G. Cui, T.L. Hu, X.H. Bu, Metal-organic framework materials for the separation and purification of light hydrocarbons, Adv. Mater. Deerfield Beach Fla 32 (3) (2020) e1806445 |
[33] | J. Du, W.C. Li, Z.X. Ren, L.P. Guo, A.H. Lu, Synthesis of mechanically robust porous carbon monoliths for CO2 adsorption and separation, J. Energy Chem. 42 (2020) 56-61 |
[34] | C.A. Grande, V.M.T.M. Silva, C. Gigola, A.E. Rodrigues, Adsorption of propane and propylene onto carbon molecular sieve, Carbon 41 (13) (2003) 2533-2545 |
[35] | C.A. Grande, S. Cavenati, F.A. da Silva, A.E. Rodrigues, Carbon molecular sieves for hydrocarbon separations by adsorption, Ind. Eng. Chem. Res. 44 (18) (2005) 7218-7227 |
[36] | Y.C. Qin, X.H. Gao, H.T. Zhang, S.H. Zhang, L.G. Zheng, Q. Li, Z.S. Mo, L.H. Duan, X.T. Zhang, L.J. Song, Measurements and distinguishment of mass transfer processes in fluid catalytic cracking catalyst particles by uptake and frequency response methods, Catal. Today 245 (2015) 147-154 |
[37] | R.B. Lin, H. Wu, L.B. Li, X.L. Tang, Z.Q. Li, J.K. Gao, H. Cui, W. Zhou, B.L. Chen, Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks, J. Am. Chem. Soc. 140 (40) (2018) 12940-12946 |
[38] | C.C. Liang, Z.L. Shi, C.T. He, J. Tan, H.D. Zhou, H.L. Zhou, Y. Lee, Y.B. Zhang, Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal-organic frameworks, J. Am. Chem. Soc. 139 (38) (2017) 13300-13303 |
[39] | J.H. Lan, D.P. Cao, W.C. Wang, High uptakes of methane in Li-doped 3D covalent organic frameworks, Langmuir 26 (1) (2010) 220-226 |
[40] | W.C. Zhang, Y.H. Cheng, C.S. Guo, C.P. Xie, Z.H. Xiang, Cobalt incorporated porous aromatic framework for CO2/CH4 separation, Ind. Eng. Chem. Res. 57 (32) (2018) 10985-10991 |
[41] | G.F. Chen, Y.X. An, Y.H. Shen, Y.Y. Wang, Z.L. Tang, B. Lu, D.H. Zhang, Effect of pore size on CH4/N2 separation using activated carbon, Chin. J. Chem. Eng. 28 (4) (2020) 1062-1068 |
[42] | X.C. Li, Y.L. Kang, L.C. Zhou, Investigation of gas displacement efficiency and storage capability for enhanced CH4 recovery and CO2 sequestration, J. Petroleum Sci. Eng. 169 (2018) 485-493 |
[43] | H. Shang, Y.P. Li, J.Q. Liu, X. Tang, J.F. Yang, J.P. Li, CH4/N2 separation on methane molecules grade diameter channel molecular sieves with a CHA-type structure, Chin. J. Chem. Eng. 27 (5) (2019) 1044-1049 |
[44] | Z. Niu, X.L. Cui, T. Pham, P.C. Lan, H.B. Xing, K.A. Forrest, L. Wojtas, B. Space, S.Q. Ma, A metal-organic framework based methane nano-trap for the capture of coal-mine methane, Angewandte Chemie Int. Ed Engl. 58 (30) (2019) 10138-10141 |
[45] | B. Lu, Y.H. Shen, Z.L. Tang, D.H. Zhang, G.F. Chen, Vacuum pressure swing adsorption process for coalbed methane enrichment, Chin. J. Chem. Eng. 32 (2021) 264-280 |
[46] | D.L. Zhong, W.C. Wang, Z.L. Zou, Y.Y. Lu, J. Yan, K. Ding, Investigation on methane recovery from low-concentration coal mine gas by tetra-n-butyl ammonium chloride semiclathrate hydrate formation, Appl. Energy 227 (2018) 686-693 |
[47] | J.F. Yang, H.H. Bai, H. Shang, J. Wang, J.P. Li, S.G. Deng, Experimental and simulation study on efficient CH4/N2 separation by pressure swing adsorption on silicalite-1 pellets, Chem. Eng. J. 388 (2020) 124222 |
[48] | M.S.A. Baksh, R.T. Yang, D.D.L. Chung, Composite sorbents by chemical vapor deposition on activated carbon, Carbon 27 (6) (1989) 931-934 |
[49] | Z.Y. Yang, D.C. Wang, Z.Y. Meng, Y.Y. Li, Adsorption separation of CH4/N2 on modified coal-based carbon molecular sieve, Sep. Purif. Technol. 218 (2019) 130-137 |
[50] | M. Inagaki, M. Toyoda, Y. Soneda, T. Morishita, Nitrogen-doped carbon materials, Carbon 132 (2018) 104-140 |
[51] | Y. Li, S.Y. Wang, B.B. Wang, Y. Wang, J.P. Wei, Sustainable biomass glucose-derived porous carbon spheres with high nitrogen doping:as a promising adsorbent for CO2/CH4/N2 adsorptive separation, Nanomaterials 10 (1) (2020) 174 |
[52] | J. Li, H.Y. Ning, D.Z. Ma, W.J. Liang, H. He, Y.S. Liu, Selection and modification of adsorbent for separation of coal mine gas by PSA process, J. China Coal Soc. (2012) 37(S1)126-130.(in Chinese) |
[53] | Y.Y. Feng, W. Yang, N. Wang, W. Chu, D.J. Liu, Effect of nitrogen-containing groups on methane adsorption behaviors of carbon spheres, J. Anal. Appl. Pyrolysis 107 (2014) 204-210 |
[54] | Y. Zhang, L. Liu, P.X. Zhang, J. Wang, M. Xu, Q. Deng, Z.L. Zeng, S.G. Deng, Ultra-high surface area and nitrogen-rich porous carbons prepared by a low-temperature activation method with superior gas selective adsorption and outstanding supercapacitance performance, Chem. Eng. J. 355 (2019) 309-319 |
[55] | X.Q. Fan, L.X. Zhang, G.B. Zhang, Z. Shu, J.L. Shi, Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture, Carbon 61 (2013) 423-430 |
[56] | Y. Li, R. Xu, B.B. Wang, J.P. Wei, L.Y. Wang, M.Q. Shen, J. Yang, Enhanced N-doped porous carbon derived from KOH-Activated waste wool:a promising material for selective adsorption of CO2/CH4 and CH4/N2, Nanomaterials 9 (2) (2019) 266 |
[57] | K.X. Yao, Y.L. Chen, Y. Lu, Y.F. Zhao, Y. Ding, Ultramicroporous carbon with extremely narrow pore distribution and very high nitrogen doping for efficient methane mixture gases upgrading, Carbon 122 (2017) 258-265 |
[58] | M.K. Aroua, W.M.A.W. Daud, C.Y. Yin, D. Adinata, Adsorption capacities of carbon dioxide, oxygen, nitrogen and methane on carbon molecular basket derived from polyethyleneimine impregnation on microporous palm shell activated carbon, Sep. Purif. Technol. 62 (3) (2008) 609-613 |
[59] | H.Y. Pan, Y. Yi, Q. Lin, G.Y. Xiang, Y. Zhang, F. Liu, Effect of surface chemistry and textural properties of activated carbons for CH4 selective adsorption through low-concentration coal bed methane, J. Chem. Eng. Data 61 (6) (2016) 2120-2127 |
[60] | R.L. Tang, Q.B. Dai, W.W. Liang, Y. Wu, X. Zhou, H.Y. Pan, Z. Li, Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from Low-rank natural gas, Chem. Eng. J. 384 (2020) 123388 |
[61] | F. Liu, Y. Zhang, P.X. Zhang, M. Xu, T. Tan, J. Wang, Q. Deng, L.Y. Zhang, Y.Q. Wan, S.G. Deng, Facile preparation of N and O-rich porous carbon from palm sheath for highly selective separation of CO2/CH4/N2 gas-mixture, Chem. Eng. J. 399 (2020) 125812 |
[62] | S.M. Wang, P.C. Wu, J.W. Fu, Q.Y. Yang, Heteroatom-doped porous carbon microspheres with ultramicropores for efficient CH4/N2 separation with ultra-high CH4 uptake, Sep. Purif. Technol. 274 (2021) 119121 |
[63] | M. Gu, B. Zhang, Z.D. Qi, Z.J. Liu, S. Duan, X.D. Du, X.F. Xian, Effects of pore structure of granular activated carbons on CH4 enrichment from CH4/N2 by vacuum pressure swing adsorption, Sep. Purif. Technol. 146 (2015) 213-218 |
[64] | D.S. Yuan, Y.N. Zheng, Q.Z. Li, B.Q. Lin, G.Y. Zhang, J.F. Liu, Effects of pore structure of prepared coal-based activated carbons on CH4 enrichment from low concentration gas by IAST method, Powder Technol. 333 (2018) 377-384 |
[65] | Y.N. Zheng, Q.Z. Li, C.C. Yuan, Q.L. Tao, Y. Zhao, G.Y. Zhang, J.F. Liu, Influence of temperature on adsorption selectivity:Coal-based activated carbon for CH4 enrichment from coal mine methane, Powder Technol. 347 (2019) 42-49 |
[66] | J.Q. Liu, H. Shang, J.F. Yang, J. Wang, J.P. Li, S.G. Deng, Novel zeolite/carbon monolith adsorbents for efficient CH4/N2 separation, Chem. Eng. J. 426 (2021) 130163 |
[67] | K.M. Steel, W.J. Koros, Investigation of porosity of carbon materials and related effects on gas separation properties, Carbon 41 (2) (2003) 253-266 |
[68] | X.J. Cui, R.M. Bustin, G. Dipple, Selective transport of CO2, CH4, and N2 in coals:insights from modeling of experimental gas adsorption data, Fuel 83 (3) (2004) 293-303 |
[69] | G.F. Zhao, P. Bai, H.M. Zhu, R.X. Yan, X.M. Liu, Z.F. Yan, The modification of activated carbons and the pore structure effect on enrichment of coal-bed methane, Asia-Pacific Jrnl Chem. Eng 3 (3) (2008) 284-291 |
[70] | Y.D. Cai, D.M. Liu, Z.J. Pan, Y.B. Yao, J.Q. Li, Y.K. Qiu, Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China, Fuel 103 (2013) 258-268 |
[71] | C.M. Liu, Y.Y. Dang, Y.P. Zhou, J. Liu, Y. Sun, W. Su, L. Zhou, Effect of carbon pore structure on the CH4/N2 separation, Adsorption 18 (3-4) (2012) 321-325 |
[72] | F.Q. Chen, Z.G. Zhang, Q.W. Yang, Y.W. Yang, Z.B. Bao, Q.L. Ren, Microporous carbon adsorbents prepared by activating reagent-free pyrolysis for upgrading low-quality natural gas, ACS Sustain. Chem. Eng. 8 (2) (2020) 977-985 |
[73] | Z. Dong, B. Li, H. Shang, P.X. Zhang, S.X. Chen, J.F. Yang, Z.L. Zeng, J. Wang, S.G. Deng, Ultramicroporous carbon granules with narrow pore size distribution for efficient CH4 separation from coal-bed gases, AlChE J. 67 (9) (2021) 17281 |
[74] | P.X. Zhang, J. Wang, W. Fan, Y. Zhong, Y. Zhang, Q. Deng, Z.L. Zeng, S.G. Deng, Ultramicroporous carbons with extremely narrow pore size distribution via in situ ionic activation for efficient gas-mixture separation, Chem. Eng. J. 375 (2019) 121931 |
[75] | S.J. Du, Y. Wu, X.J. Wang, Q.B. Xia, J. Xiao, X. Zhou, Z. Li, Facile synthesis of ultramicroporous carbon adsorbents with ultra-high CH4 uptake by in situ ionic activation, AlChE J. 66 (7) (2020) e16231 |
[76] | F.X. Liu, Q. Lin, C.B. Fu, M. Wang, M. Han, C. Huang, H.Y. Pan, F. Liu, Alkaline KMnO4 solution pretreat hydrochar to prepare high ultra-micropore volume carbon for CH4 enrichment from low-concentration coalbed methane, Fuel 303 (2021) 121301 |
[77] | D.Z. Ma, The research on coal mines lack the wind gas pressure swing adsorption separation adsorbent. Beijing technology University:Beijing, 2013 |
[78] | R. Krishna, Methodologies for evaluation of metal-organic frameworks in separation applications, RSC Adv. 5 (64) (2015) 52269-52295 |
[79] | Y. Yang, A.M. Ribeiro, P. Li, J.G. Yu, A.E. Rodrigues, Adsorption equilibrium and kinetics of methane and nitrogen on carbon molecular sieve, Ind. Eng. Chem. Res. 53 (43) (2014) 16840-16850 |
[80] | J. Liu, Y.P. Zhou, Y. Sun, W. Su, L. Zhou, Methane storage in wet carbon of tailored pore sizes, Carbon 49 (12) (2011) 3731-3736 |
[81] | X. Ning, W.J. Koros, Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation, Carbon 66 (2014) 511-522 |
[82] | J.H. Zhang, S.J. Qu, L.T. Li, P. Wang, X.F. Li, Y.F. Che, X.L. Li, Preparation of carbon molecular sieves used for CH4/N2 separation, J. Chem. Eng. Data 63 (5) (2018) 1737-1744 |
[83] | S. Wang, F. Cheng, P. Zhang, W.C. Li, A.H. Lu, Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores, Nano Research 10 (6) (2017) 2106-2116 |
[84] | G.P. Hao, Z.Y. Jin, Q. Sun, X.Q. Zhang, J.T. Zhang, A.H. Lu, Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties, Energy Environ. Sci. 6 (12) (2013) 3740 |
[85] | L.P. Guo, W.C. Li, B. Qiu, Z.X. Ren, J. Du, A.H. Lu, Interfacial assembled preparation of porous carbon composites for selective CO2 capture at elevated temperatures, J. Mater. Chem. A 7 (10) (2019) 5402-5408 |
[86] | Z.Y. Jin, Y.Y. Xu, Q. Sun, A.H. Lu, Evidence of microporous carbon nanosheets showing fast kinetics in both gas phase and liquid phase environments, Small Weinheim Der Bergstrasse Ger. 11 (38) (2015) 5151-5156 |
[87] | S. Xu, W.C. Li, C.T. Wang, L. Tang, G.P. Hao, A.H. Lu, Self-pillared ultramicroporous carbon nanoplates for selective separation of CH4/N2, Angewandte Chemie Int. Ed Engl. 60 (12) (2021) 6339-6343 |
[88] | T. Grancha, M. Mon, J. Ferrando-Soria, J. Gascon, B. Seoane, E.V. Ramos-Fernandez, D. Armentano, E. Pardo, Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs, J. Mater. Chem. A 5 (22) (2017) 11032-11039 |
[89] | Y.Q. Wu, B. M. Weckhuysen, Hydrocarbons separation and purification with porous materials, Angew. Chem. Int. Ed. 60 (53) 18930-18949; Angew. Chem. 133 (35) (2021) 19078-19097. |
[90] | K. Nieszporek, M. Drach, P. Podkościelny, Theoretical studies of hydrocarbon homologous series adsorption on activated carbons:Adsorption equilibria and calorimetry, Sep. Purif. Technol. 69 (2) (2009) 174-184 |
[91] | B.P. Russell, M.D. LeVan, Coadsorption of organic compounds and water vapor on BPL activated carbon. 3. ethane, propane, and mixing rules, Ind. Eng. Chem. Res. 36 (6) (1997) 2380-2389 |
[92] | Y.F. He, J.H. Yun, N.A. Seaton, Adsorption equilibrium of binary methane/ethane mixtures in BPL activated carbon:isotherms and calorimetric heats of adsorption, Langmuir 20 (16) (2004) 6668-6678 |
[93] | C.E. Holland, S.A. Al-Muhtaseb, J.A. Ritter, Adsorption of C1-C7 normal alkanes on BAX activated carbon. 1. potential theory correlation and adsorbent characterization, Ind. Eng. Chem. Res. 40 (1) (2001) 338-346 |
[94] | W.W. Liang, H.Y. Xiao, D. Lv, J. Xiao, Z. Li, Novel asphalt-based carbon adsorbents with super-high adsorption capacity and excellent selectivity for separation for light hydrocarbons, Sep. Purif. Technol. 190 (2018) 60-67 |
[95] | Z.F. Ke, H.Y. Xiao, Y.J. Wen, S.J. Du, X. Zhou, J. Xiao, Z. Li, Adsorption property of starch-based microporous carbon materials with high selectivity and uptake for C1/C2/C3 separation, Ind. Eng. Chem. Res. 60 (12) (2021) 4668-4676 |
[96] | P.X. Zhang, X. Wen, L. Wang, Y. Zhong, Y. Su, Y. Zhang, J. Wang, J.F. Yang, Z.L. Zeng, S.G. Deng, Algae-derived N-doped porous carbons with ultrahigh specific surface area for highly selective separation of light hydrocarbons, Chem. Eng. J. 381 (2020) 122731 |
[97] | B. Yuan, J. Wang, Y.X. Chen, X.F. Wu, H.M. Luo, S.G. Deng, Unprecedented performance of N-doped activated hydrothermal carbon towards C2H6/CH4, CO2/CH4, and CO2/H2 separation, J. Mater. Chem. A 4 (6) (2016) 2263-2276 |
[98] | J. Wang, R. Krishna, T. Yang, S.G. Deng, Nitrogen-rich microporous carbons for highly selective separation of light hydrocarbons, J. Mater. Chem. A 4 (36) (2016) 13957-13966 |
[99] | Q.Z. Xue, X.F. Li, X. Chang, C.C. Ling, L. Zhu, W. Xing, S-graphite slit pore:a superior selective adsorbent for light hydrocarbons, Appl. Surf. Sci. 444 (2018) 772-779 |
[100] | X.C. Ma, R.F. Chen, K. Zhou, Q.D. Wu, H.L. Li, Z. Zeng, L.Q. Li, Activated porous carbon with an ultrahigh surface area derived from waste biomass for acetone adsorption, CO2 capture, and light hydrocarbon separation, ACS Sustainable Chem. Eng. 8 (31) (2020) 11721-11728 |
[101] | X.C. Ma, M. Fang, B.G. Liu, R.F. Chen, R. Shi, Q.D. Wu, Z. Zeng, L.Q. Li, Urea-assisted synthesis of biomass-based hierarchical porous carbons for the light hydrocarbons adsorption and separation, Chem. Eng. J. 428 (2022) 130985 |
[102] | L.H. Zhang, W.C. Li, H. Liu, Q.G. Wang, L. Tang, Q.T. Hu, W.J. Xu, W.H. Qiao, Z.Y. Lu, A.H. Lu, Thermoregulated phase-transition synthesis of two-dimensional carbon nanoplates rich in sp2 carbon and unimodal ultramicropores for kinetic gas separation, Angewandte Chemie Int. Ed Engl. 57 (6) (2018) 1632-1635 |
[103] | X.C. Ma, B.G. Liu, Q.D. Wu, D.P. Li, R.F. Chen, Z. Zeng, L.Q. Li, Specific Li+ sites in a nanoporous carbon for enhanced light hydrocarbons storage and separation:GCMC and DFT simulations, Fuel 288 (2021) 119647 |
[104] | F. Rainone, O. D'Agostino, A. Erto, M. Balsamo, A. Lancia, Biogas upgrading by adsorption onto activated carbon and carbon molecular sieves:Experimental and modelling study in binary CO2/CH4 mixture, J. Environ. Chem. Eng. 9 (5) (2021) 106256 |
[105] | M.P.S. Santos, C.A. Grande, A.E. Rodrigues, Pressure swing adsorption for biogas upgrading. effect of recycling streams in pressure swing adsorption design, Ind. Eng. Chem. Res. 50 (2) (2011) 974-985 |
[106] | M.A.O. Lourenço, C. Nunes, J.R.B. Gomes, J. Pires, M.L. Pinto, P. Ferreira, Pyrolyzed chitosan-based materials for CO2/CH4 separation, Chem. Eng. J. 362 (2019) 364-374 |
[107] | H.W. Fan, A. Mundstock, J.H. Gu, H. Meng, J. Caro, An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation, J. Mater. Chem. A 6 (35) (2018) 16849-16853 |
[108] | N. Álvarez-Gutiérrez, M.V. Gil, F. Rubiera, C. Pevida, Adsorption performance indicators for the CO2/CH4 separation:Application to biomass-based activated carbons, Fuel Process. Technol. 142 (2016) 361-369 |
[109] | J. Wang, P.X. Zhang, L. Liu, Y. Zhang, J.F. Yang, Z.L. Zeng, S.G. Deng, Controllable synthesis of bifunctional porous carbon for efficient gas-mixture separation and high-performance supercapacitor, Chem. Eng. J. 348 (2018) 57-66 |
[110] | F.Q. Yang, J. Wang, L. Liu, P.X. Zhang, W.K. Yu, Q. Deng, Z.L. Zeng, S.G. Deng, Synthesis of porous carbons with high N-content from shrimp shells for efficient CO2-capture and gas separation, ACS Sustainable Chem. Eng. 6 (11) (2018) 15550-15559 |
[111] | M. Zhang, L. Liu, T. He, X.H. Ju, P. Chen, Molten salt assisted pyrolysis approach for the synthesis of nitrogen-rich microporous carbon nanosheets and its application as gas capture sorbent, Microporous Mesoporous Mater. 300 (2020) 110177 |
[112] | P.X. Zhang, Y. Zhong, J. Ding, J. Wang, M. Xu, Q. Deng, Z.L. Zeng, S.G. Deng, A new choice of polymer precursor for solvent-free method:Preparation of N-enriched porous carbons for highly selective CO2 capture, Chem. Eng. J. 355 (2019) 963-973 |
[113] | Y. Li, N. Liu, T. Zhang, B.B. Wang, Y. Wang, L.Y. Wang, J.P. Wei, Highly microporous nitrogen-doped carbons from anthracite for effective CO2 capture and CO2/CH4 separation, Energy 211 (2020) 118561 |
[114] | P.B. Liu, S. Gao, Y. Wang, Y. Huang, W.J. He, W.H. Huang, J.H. Luo, Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials, Chem. Eng. J. 381 (2020) 122653 |
[115] | S. Furmaniak, P. Kowalczyk, A.P. Terzyk, P.A. Gauden, P.J.F. Harris, Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures, J. Colloid Interface Sci. 397 (2013) 144-153 |
[116] | W. Su, L. Yao, M. Ran, Y. Sun, J. Liu, X.J. Wang, Adsorption properties of N2, CH4, and CO2 on sulfur-doped microporous carbons, J. Chem. Eng. Data 63 (8) (2018) 2914-2920 |
[117] | D. Saha, G. Orkoulas, J.H. Chen, D.K. Hensley, Adsorptive separation of CO2 in sulfur-doped nanoporous carbons:Selectivity and breakthrough simulation, Microporous Mesoporous Mater. 241 (2017) 226-237 |
[118] | J. Park, N.F. Attia, M. Jung, M.E. Lee, K. Lee, J. Chung, H. Oh, Sustainable nanoporous carbon for CO2, CH4, N2, H2 adsorption and CO2/CH4 and CO2/N2 separation, Energy 158 (2018) 9-16 |
[119] | M.B. Kim, Y.S. Bae, D.K. Choi, C.H. Lee, Kinetic separation of landfill gas by a two-bed pressure swing adsorption process packed with carbon molecular sieve:nonisothermal operation, Ind. Eng. Chem. Res. 45 (14) (2006) 5050-5058 |
[120] | B. Yuan, X.F. Wu, Y.X. Chen, J.H. Huang, H.M. Luo, S.G. Deng, Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon:approach for greenhouse gases capture and biogas upgrading, Environ. Sci. Technol. 47 (10) (2013) 5474-5480 |
[121] | A. Kapoor, R.T. Yang, Kinetic separation of methane-carbon dioxide mixture by adsorption on molecular sieve carbon, Chem. Eng. Sci. 44 (8) (1989) 1723-1733 |
[122] | L.A.M. Rocha, K.A. Andreassen, C.A. Grande, Separation of CO2/CH4 using carbon molecular sieve (CMS) at low and high pressure, Chem. Eng. Sci. 164 (2017) 148-157 |
[123] | N. Álvarez-Gutiérrez, M.V. Gil, F. Rubiera, C. Pevida, Kinetics of CO2 adsorption on cherry stone-based carbons in CO2/CH4 separations, Chem. Eng. J. 307 (2017) 249-257 |
[124] | C.A. Grande, R. Blom, A. Möller, J. Möllmer, High-pressure separation of CH4/CO2 using activated carbon, Chem. Eng. Sci. 89 (2013) 10-20 |
[125] | D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, D.F. Quinn, Activated carbon monoliths for methane storage:influence of binder, Carbon 40 (15) (2002) 2817-2825 |
[126] | F. Banisheykholeslami, A.A. Ghoreyshi, M. Mohammadi, K. Pirzadeh, Synthesis of a carbon molecular sieve from broom corn stalk via carbon deposition of methane for the selective separation of a CO2/CH4Mixture, CLEAN Soil Air Water 43 (7) (2015) 1084-1092 |
[127] | A.S. Mestre, C. Freire, J. Pires, A.P. Carvalho, M.L. Pinto, High performance microspherical activated carbons for methane storage and landfill gas or biogas upgrade, J. Mater. Chem. A 2 (37) (2014) 15337-15344 |
[128] | K.R. Matranga, A.L. Myers, E.D. Glandt, Storage of natural gas by adsorption on activated carbon, Chem. Eng. Sci. 47 (7) (1992) 1569-1579 |
[129] | X.J. Wang, B.Q. Yuan, X. Zhou, Q.B. Xia, Y.W. Li, D.L. An, Z. Li, Novel glucose-based adsorbents (Glc-Cs) with high CO2 capacity and excellent CO2/CH4/N2 adsorption selectivity, Chem. Eng. J. 327 (2017) 51-59 |
[130] | N.F. Attia, M. Jung, J. Park, H. Jang, K. Lee, H. Oh, Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation, Chem. Eng. J. 379 (2020) 122367 |
[131] | L.F. Yang, S.H. Qian, X.B. Wang, X.L. Cui, B.L. Chen, H.B. Xing, Energy-efficient separation alternatives:metal-organic frameworks and membranes for hydrocarbon separation, Chem. Soc. Rev. 49 (15) (2020) 5359-5406 |
[132] | I. Amghizar, L.A. Vandewalle, K.M.V. Geem, G.B. Marin, New trends in olefin production, Engineering 3 (2) (2017) 171-178 |
[133] | Y. Liu, Z.J. Chen, G.P. Liu, Y. Belmabkhout, K. Adil, M. Eddaoudi, W. Koros, Conformation-controlled molecular sieving effects for membrane-based propylene/propane separation, Adv. Mater. 31 (14) (2019) 1807513 |
[134] | Q. Ding, Z.Q. Zhang, C. Yu, P.X. Zhang, J. Wang, L.Y. Kong, X.L. Cui, C.H. He, S.G. Deng, H.B. Xing, Separation of propylene and propane with a microporous metal-organic framework via equilibrium-kinetic synergetic effect, AlChE J. 67 (1) (2021) 17094 |
[135] | D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 532 (7600) (2016) 435-437 |
[136] | Z.B. Bao, S. Alnemrat, L. Yu, I. Vasiliev, Q.L. Ren, X.Y. Lu, S.G. Deng, Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework, Langmuir 27 (22) (2011) 13554-13562 |
[137] | F. Gao, Y.Q. Wang, X. Wang, S.H. Wang, Ethylene/ethane separation by CuCl/AC adsorbent prepared using CuCl2 as a precursor, Adsorption 22 (7) (2016) 1013-1022 |
[138] | W.J. Jiang, L.B. Sun, Y. Yin, X.L. Song, X.Q. Liu, Ordered mesoporous carbon CMK-3 modified with Cu(I) for selective ethylene/ethane adsorption, Sep. Sci. Technol. 48 (6) (2013) 968-976 |
[139] | G. De Luca, D. Saha, S. Chakraborty, Why Ag(I) grafted porous carbon matrix prefers alkene over alkane? An inside view from ab-initio study, Microporous Mesoporous Mater. 316 (2021) 110940 |
[140] | D. Saha, B. Toof, R. Krishna, G. Orkoulas, P. Gismondi, R. Thorpe, M.L. Comroe, Separation of ethane-ethylene and propane-propylene by Ag(I) doped and sulfurized microporous carbon, Microporous Mesoporous Mater. 299 (2020) 110099 |
[141] | C. Ma, X.J. Wang, X. Wang, B.Q. Yuan, Y.F. Wu, Z. Li, Novel glucose-based adsorbents (Glc-As) with preferential adsorption of ethane over ethylene and high capacity, Chem. Eng. Sci. 172 (2017) 612-621 |
[142] | W.W. Liang, Y.F. Zhang, X.J. Wang, Y. Wu, X. Zhou, J. Xiao, Y.W. Li, H.H. Wang, Z. Li, Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene, Chem. Eng. Sci. 162 (2017) 192-202 |
[143] | X.J. Wang, Y. Wu, X. Zhou, J. Xiao, Q.B. Xia, H.H. Wang, Z. Li, Novel C-PDA adsorbents with high uptake and preferential adsorption of ethane over ethylene, Chem. Eng. Sci. 155 (2016) 338-347 |
[144] | W.W. Liang, Y. Wu, H.Y. Xiao, J. Xiao, Y.W. Li, Z. Li, Ethane-selective carbon composites CPDA@A-ACs with high uptake and its enhanced ethane/ethylene adsorption selectivity, AIChE J. 64 (9) (2018) 3390-3399 |
[145] | X.J. Wang, Y. Wu, J.J. Peng, Y.F. Wu, J. Xiao, Q.B. Xia, Z. Li, Novel glucosamine-based carbon adsorbents with high capacity and its enhanced mechanism of preferential adsorption of C2H6 over C2H4, Chem. Eng. J. 358 (2019) 1114-1125 |
[146] | S.K. Lee, H. Park, J.W. Yoon, K. Kim, S.J. Cho, G. Maurin, R. Ryoo, J.S. Chang, Microporous 3D graphene-like zeolite-templated carbons for preferential adsorption of ethane, ACS Appl. Mater. Interfaces 12 (25) (2020) 28484-28495 |
[147] | J.T. Liu, Y.C. Xiao, T.S. Chung, Flexible thermally treated 3D PIM-CD molecular sieve membranes exceeding the upper bound line for propylene/propane separation, J. Mater. Chem. A 5 (9) (2017) 4583-4595 |
[148] | Q.X. Wang, F. Huang, C.J. Cornelius, Y.F. Fan, Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations, J. Membr. Sci. 621 (2021) 118785 |
[149] | A.B. Fuertes, I. Menendez, Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes, Sep. Purif. Technol. 28 (1) (2002) 29-41 |
[150] | Y.-H. Chu, D. Yancey, L. Xu, M. Martinez, M. Brayden, W. Koros, Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations, J. Membr. Sci. 548 (2018) 609-620 |
[151] | K. Hazazi, X. Ma, Y. Wang, W. Ogieglo, A. Alhazmi, Y. Han, I. Pinnau, Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor, J. Membr. Sci. 585 (2019) 1-9 |
[152] | J.Q. Liu, C. Han, M. McAdon, J. Goss, K. Andrews, High throughput development of one carbon molecular sieve for many gas separations, Microporous Mesoporous Mater. 206 (2015) 207-216 |
[153] | M. Rungta, L.R. Xu, W.J. Koros, Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation, Carbon 50 (4) (2012) 1488-1502 |
[154] | O. Salinas, X.H. Ma, E. Litwiller, I. Pinnau, Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1), J. Membr. Sci. 504 (2016) 133-140 |
[155] | O. Salinas, X.H. Ma, E. Litwiller, I. Pinnau, High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide, J. Membr. Sci. 500 (2016) 115-123 |
[156] | Y.X. Ren, X. Liang, H.Z. Dou, C.M. Ye, Z.Y. Guo, J.Y. Wang, Y.C. Pan, H. Wu, M.D. Guiver, Z.Y. Jiang, Membrane-based olefin/paraffin separations, Adv. Sci. 7 (19) (2020) 2001398 |
[157] | H.Z. Dou, M. Xu, B. Jiang, G.B. Wen, L. Zhao, B.Y. Wang, A.P. Yu, Z.Y. Bai, Y.L. Sun, L.H. Zhang, Z.W. Chen, Z.Y. Jiang, Bioinspired graphene oxide membranes with dual transport mechanisms for precise molecular separation, Adv. Funct. Mater. 29 (50) (2019) 1905229 |
[158] | A. Cadiau, K. Adil, P.M. Bhatt, Y. Belmabkhout, M. Eddaoudi, A metal-organic framework-based splitter for separating propylene from propane, Science 353 (6295) (2016) 137-140 |
[159] | M. Mofarahi, M. Sadrameli, J. Towfighi, Characterization of activated carbon by propane and propylene adsorption, J. Chem. Eng. Data 48 (5) (2003) 1256-1261 |
[160] | R. Arriagada, G. Bello, R. García, F. Rodríguez-Reinoso, A. Sepúlveda-Escribano, Carbon molecular sieves from hardwood carbon pellets. The influence of carbonization temperature in gas separation properties, Microporous Mesoporous Mater. 81 (1-3) (2005) 161-167 |
[161] | M.B. Rao, S. Sircar, Nanoporous carbon membranes for separation of gas mixtures by selective surface flow, J. Membr. Sci. 85 (3) (1993) 253-264 |
[162] | M.B. Rao, S. Sircar, Performance and pore characterization of nanoporous carbon membranes for gas separation, J. Membr. Sci. 110 (1) (1996) 109-118 |
[163] | D.J. Parrillo, C. Thaeron, S. Sircar, Separation of bulk hydrogen sulfide-hydrogen mixtures by selective surface flow membrane, AIChE J. 43 (9) (1997) 2239-2245 |
[164] | M. Paranjape, P.F. Clarke, B.B. Pruden, D.J. Parrillo, C. Thaeron, S. Sircar, Separation of bulk carbon dioxide-hydrogen mixtures by selective surface flow membrane, Adsorption 4 (3-4) (1998) 355-360 |
[165] | C. Thaeron, D.J. Parrillo, S. Sircar, P.F. Clarke, M. Paranjape, B.B. Pruden, Separation of hydrogen sulfide-methane mixtures by selective surface flow membrane, Sep. Purif. Technol. 15 (2) (1999) 121-129 |
[166] | J.Q. Liu, J. Goss, T. Calverley, Y.J. Liu, C. Broomall, J. Kang, R. Golombeski, D. Anaya, B. Moe, K. Mabe, G. Watson, A. Wetzel, Carbon molecular sieve fiber with 3.4-4.9 Angstrom effective micropores for propylene/propane and other gas separations, Microporous Mesoporous Mater. 305 (2020) 110341 |
[167] | J.Q. Liu, E.M. Calverley, M.H. McAdon, J.M. Goss, Y.J. Liu, K.C. Andrews, T.D. Wolford, D.E. Beyer, C.S. Han, D.A. Anaya, R.P. Golombeski, C.F. Broomall, S. Sprague, H. Clements, K.F. Mabe, New carbon molecular sieves for propylene/propane separation with high working capacity and separation factor, Carbon 123 (2017) 273-282 |
[168] | W.L. Qiu, F.S. Li, S.L. Fu, W.J. Koros, Isomer-tailored carbon molecular sieve membranes with high gas separation performance, ChemSusChem 13 (19) (2020) 5318-5328 |
[169] | X.H. Do, Q.T. Nguyen, S. Kim, A.S. Lee, K.Y. Baek, Effect of thermal processing on brominated 6FDA-DAM for effective propylene/propane separation, Sep. Purif. Technol. 262 (2021) 118331 |
[170] | X.Y. Chen, A.G. Xiao, D. Rodrigue, Polymer-based membranes for propylene/propane separation, Sep. Purif. Rev. (2021) 51 130-142 |
[171] | M. Andrade, F. Relvas, A. Mendes, Highly propylene equilibrium selective carbon molecular sieve adsorbent, Sep. Purif. Technol. 245 (2020) 116853 |
[172] | M. Andrade, A.J. Parnell, G. Bernardo, A. Mendes, Propane selective carbon adsorbents from phenolic resin precursor, Microporous Mesoporous Mater. 320 (2021) 111071 |
[173] | J.Q. Liu, Y.J. Liu, D. Kayrak Talay, E. Calverley, M. Brayden, M. Martinez, A new carbon molecular sieve for propylene/propane separations, Carbon 85 (2015) 201-211 |
[174] | J.E. Koresh, A. Soffer, The carbon molecular sieve membranes. general properties and the permeability of CH4/H2 mixture, Sep. Sci. Technol. 22 (2-3) (1987) 973-982 |
[175] | S. Lagorsse, Carbon molecular sieve membranes sorption, kinetic and structural characterization, J. Membr. Sci. 241 (2) (2004) 275-287 |
[176] | X.L. Ma, B.K. Lin, X.T. Wei, J. Kniep, Y.S. Lin, Gamma-alumina supported carbon molecular sieve membrane for propylene/propane separation, Ind. Eng. Chem. Res. 52 (11) (2013) 4297-4305 |
[177] | J.H. Shin, H.J. Yu, J. Park, A.S. Lee, S.S. Hwang, S.J. Kim, S. Park, K.Y. Cho, W. Won, J.S. Lee, Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for C3H6/C3H8 separation, J. Membr. Sci. 598 (2020) 117660 |
[178] | Y.H. Cao, K. Zhang, O. Sanyal, W.J. Koros, Carbon molecular sieve membrane preparation by economical coating and pyrolysis of porous polymer hollow fibers, Angewandte Chemie Int. Ed Engl. 58 (35) (2019) 12149-12153 |
[179] | W.L. Qiu, L.R. Xu, Z.Y. Liu, Y. Liu, P. Arab, M. Brayden, M. Martinez, J.Q. Liu, A. Roy, W.J. Koros, Surprising olefin/paraffin separation performance recovery of highly aged carbon molecular sieve hollow fiber membranes by a super-hyperaging treatment, J. Membr. Sci. 620 (2021) 118701 |
[180] | S.J. Du, X.J. Wang, J.W. Huang, K. Kent, B.L. Huang, I. Karam, Z. Li, J. Xiao, Ultramicroporous carbons featuring sub-Ångstrom tunable apertures for the selective separation of light hydrocarbon, AIChE J. 67 (9) (2021) 17285. DOI:10.1002/aic.17285 |
[181] | P.J. Bereciartua, Á. Cantín, A. Corma, J.L. Jordá, M. Palomino, F. Rey, S. Valencia, E.W. Corcoran Jr, P. Kortunov, P.I. Ravikovitch, A. Burton, C. Yoon, Y. Wang, C. Paur, J. Guzman, A.R. Bishop, G.L. Casty, Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene, Science 358 (6366) (2017) 1068-1071 |
[182] | Q. Ding, Z.Q. Zhang, C. Yu, P.X. Zhang, J. Wang, X.L. Cui, C.H. He, S.G. Deng, H.B. Xing, Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework, Sci. Adv. 6 (15) (2020) eaaz4322 |
[183] | Y.F. Yuan, Y.S. Wang, X.L. Zhang, W.C. Li, G.P. Hao, L. Han, A.H. Lu, Wiggling mesopores kinetically amplify the adsorptive separation of propylene/propane, Angew. Chem. Int. Ed. 60 (35) (2021) 19063-19067 |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[4] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[5] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[6] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[7] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[8] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[9] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[10] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[11] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[12] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[13] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[14] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[15] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||