[1] T. Inui, Reforming of CH4 by CO2, O2, and/or H2O, The Royal Society of Chemistry, Cambridge, 2002. [2] G.J. Kim, D.S. Cho, K.H. Kim, J.H. Kim, The reaction of CO2 with CH4 to synthesize H2 and CO over nickel-loaded Y-zeolites, Catal. Lett. 28(1994) 41-52. [3] J.R. Rostrup-Nielsen, J.H.B. Hansen, CO2-reforming of methane over transition metals, J. Catal. 144(1993) 38-49. [4] O. Tokunaga, S. Ogasawara, Reduction of carbon dioxide with methane over Ni-catalyst, React. Kinet. Catal. Lett. 39(1989) 69-74. [5] N. Rahemi, M. Haghighi, A.A. Babaluo, M.F. Jafari, P. Estifaee, Synthesis and physicochemical characterizations of Ni/Al2O3-ZrO2 nanocatalyst prepared via impregnation method and treated with non-thermal plasma for CO2 reforming of CH4, J. Ind. Eng. Chem. 19(2013) 1566-1576. [6] J. Zhang, H. Wang, A.K. Dalai, Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4, Appl. Catal. A Gen. 339(2008) 121-129. [7] H. Long, Y. Xu, X. Zhang, S. Hu, S. Shang, Y. Yin, X. Dai, Ni-Co/Mg-Al catalyst derived from hydrotalcite-like compound prepared by plasma for dry reforming of methane, J. Energy Chem. 22(2013) 733-739. [8] J.A. Lercher, J.H. Bitter, W. Hally, W. Niessen, K. Seshan, Design of stable catalysts for methane-carbon dioxide reforming, Stud. Surf. Sci. Catal. 101(1996) 463-472. [9] S. Tang, L. Ji, J. Lin, H.C. Zeng, K.L. Tan, K. Li, CO2 reforming of methane to synthesis gas over sol-gel-made Ni/γ-Al2O3 catalysts from organometallic precursors, J. Catal. 194(2000) 424-430. [10] J.H. Kim, D.J. Suh, T.J. Park, K.L. Kim, Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts, Appl. Catal. A Gen. 197(2000) 191-200. [11] J.R. Rostrup-Nielsen, Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane, J. Catal. 85(1984) 31-43. [12] X.Y. Li, D. Li, H. Tian, L. Zeng, Z.J. Zhao, J.L. Gong, Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles, Appl. Catal. B Environ. 202(2017) 683-694. [13] M.G. Jeong, S.Y. Kim, D.H. Kim, S.W. Han, I.H. Kim, M. Lee, Y.K. Hwang, Y.D. Kim, High-performing and durable MgO/Ni catalysts via atomic layer deposition for CO2 reforming of methane (CRM), Appl. Catal. A Gen. 515(2016) 45-50. [14] S.M. Kozlov, K.M. Neyman, Insights from methane decomposition on nanostructured palladium, J. Catal. 337(2016) 111-121. [15] S. Mostafa, F. Behafarid, J.R. Croy, L.K. Ono, L. Li, J.C. Yang, A.I. Frenkel, B.R. Cuenya, Shape-dependent catalytic properties of Pt nanoparticles, J. Am. Chem. Soc. 132(2010) 15714-15719. [16] X.Y. Quek, I.A.W. Filot, R. Pestman, R.A. van Santen, V. Petkov, E.J.M. Hensen, Correlating Fischer-Tropsch activity to Ru nanoparticle surface structure as probed by high-energy X-ray diffraction, Chem. Commun. 50(2014) 6005-6008. [17] F. Viñes, Y. Lykhach, T. Staudt, M.P.A. Lorenz, C. Papp, H.P. Steinrück, J. Libuda, K.M. Neyman, A. Görling, Methane activation by platinum:Critical role of edge and corner sites of metal nanoparticles, Chem. Eur. J. 16(2010) 6530-6539. [18] D. Li, X.Y. Li, J.L. Gong, Catalytic reforming of oxygenates:State of the art and future prospects, Chem. Rev. 116(2016) 11529-11653. [19] Y.H. Hu, Solid-solution catalysts for CO2 reforming of methane, Catal. Today 148(2009) 206-211. [20] Y.H. Hu, E. Ruckenstein, The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4, Catal. Lett. 43(1997) 71-77. [21] L. Zhang, Q. Zhang, Y. Liu, Y. Zhang, Dry reforming of methane over Ni/MgO-Al2O3 catalysts prepared by two-step hydrothermal method, Appl. Surf. Sci. 389(2016) 25-33. [22] M.A. Naeem, A.S. Al-Fatesh, A.E. Abasaeed, A.H. Fakeeha, Activities of Ni-based nano catalysts for CO2-CH4 reforming prepared by polyol process, Fuel Process. Technol. 122(2014) 141-152. [23] S.B. Wang, G.Q.M. Lu, CO2 reforming of methane on Ni catalysts:Effects of the support phase and preparation technique, Appl. Catal. B Environ. 16(1998) 269-277. [24] A.T. Bell, The impact of nanoscience on heterogeneous catalysis, Science 299(2003) 1688-1691. [25] G.A. Somorjai, Y. Li, Major successes of theory-and-experiment-combined studies in surface chemistry and heterogeneous catalysis, Top. Catal. 53(2010) 311-325. [26] S.J. Tauster, S.C. Fung, Strong metal-support interactions:Occurrence among the binary oxides of groups ⅡA-VB, J. Catal. 55(1978) 29-35. [27] H. Ma, L. Zeng, H. Tian, D. Li, X. Wang, X. Li, J. Gong, Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts, Appl. Catal. B Environ. 181(2016) 321-331. [28] M. Valden, X. Lai, D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science 281(1998) 1647-1650. [29] M. Cargnello, V.V.T. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. Fornasiero, C.B. Murray, Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts, Science 341(2013) 771-773. [30] J.S. Chang, S.E. Park, J.W. Yoo, J.N. Park, Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane, J. Catal. 195(2000) 1-11. [31] Y. Cui, H. Zhang, H. Xu, W. Li, Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/α-Al2O3 catalyst:The effect of temperature on the reforming mechanism, Appl. Catal. A Gen. 318(2007) 79-88. [32] V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals:A pseudopotential plane-wave study, Int. J. Quantum Chem. 77(2000) 895-910. [33] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations:Molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64(1992) 1045-1097. [34] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(1992) 6671-6687. [35] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(1981) 5048-5079. [36] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41(1990) 7892-7895. [37] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1996) 15-50. [38] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(1996) 11169-11186. [39] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1993) 558-561. [40] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium, Phys. Rev. B 49(1994) 14251-14269. [41] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(1976) 5188-5192. [42] T.A. Halgrena, W.N. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chem. Phys. Lett. 49(1977) 225-232. [43] S. Speziale, C.S. Zha, T.S. Duffy, R.J. Hemley, H.K. Mao, Quasi-hydrostatic compression of magnesium oxide to 52 GPa:Implications for the pressure-volume-temperature equation of state, J. Geophys. Res. 106(2001) 515-528. [44] C. Di Valentin, L. Giordano, G. Pacchioni, N. Rösch, Nucleation and growth of Ni clusters on regular sites and F centers on the MgO(001) surface, Surf. Sci. 522(2003) 175-184. [45] A.D. Vitto, L. Giordano, G. Pacchioni, N. Rösch, CO adsorption on Ni4 and Ni8 clusters deposited on regular and defect sites of the MgO(001) surface, Surf. Sci. 575(2005) 103-114. [46] H.Y. Liu, B.T. Teng, M.H. Fan, B.J. Wang, Y.L. Zhang, H.G. Harris, CH4 dissociation on the perfect and defective MgO(001) supported Ni4, Fuel 123(2014) 285-292. [47] B. Hammer, J.K. Nørskov, Electronic factors determining the reactivity of metal surfaces, Surf. Sci. 343(1995) 211-220. [48] M. Mavrikakis, B. Hammer, J.K. Nørskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett. 81(1998) 2819-2822. [49] M.C.J. Bradford, M.A. Vannice, Catalytic reforming of methane with carbon dioxide over nickel catalysts Ⅱ. Reaction kinetics, Appl. Catal. A Gen. 142(1996) 97-122. [50] J. Wei, E. Iglesia, Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts, J. Catal. 224(2004) 370-383. [51] D. Li, L. Zeng, X.Y. Li, X. Wang, H.Y. Ma, S. Assabumrungrat, J.L. Gong, Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation, Appl. Catal. B Environ. 176-177(2015) 532-541. [52] S. Sao-Joao, S. Giorgio, C. Mottet, J. Goniakowski, C.R. Henry, Interface structure of Ni nanoparticles on MgO(100):A combined HRTEM and molecular dynamic study, Surf. Sci. 600(2006) L86-L90. [53] S.J. Tauster, Strong metal-support interactions, Acc. Chem. Res. 20(1987) 389-394. [54] Y.P. Guo, W.Y. Li, J. Feng, Reaction pathway of CH4/CO2 reforming over Ni8/MgO(100), Surf. Sci. 660(2017) 22-30. |