Chin.J.Chem.Eng. ›› 2019, Vol. 27 ›› Issue (1): 191-199.DOI: 10.1016/j.cjche.2018.03.023
• Biotechnology and Bioengineering • Previous Articles Next Articles
Meisam Sharifi, Seyed-Mortaza Robatjazi, Minoo Sadri, Jafar Mohammadian Mosaabadi
Received:
2017-11-14
Revised:
2018-02-24
Online:
2019-01-31
Published:
2019-01-28
Contact:
Seyed-Mortaza Robatjazi
Supported by:
Supported by the Malek-Ashtar University of Technology (925826018, 2015).
Meisam Sharifi, Seyed-Mortaza Robatjazi, Minoo Sadri, Jafar Mohammadian Mosaabadi
通讯作者:
Seyed-Mortaza Robatjazi
基金资助:
Supported by the Malek-Ashtar University of Technology (925826018, 2015).
Meisam Sharifi, Seyed-Mortaza Robatjazi, Minoo Sadri, Jafar Mohammadian Mosaabadi. Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies[J]. Chin.J.Chem.Eng., 2019, 27(1): 191-199.
Meisam Sharifi, Seyed-Mortaza Robatjazi, Minoo Sadri, Jafar Mohammadian Mosaabadi. Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 191-199.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.03.023
[1] P. Mulchandani, A. Mulchandani, I. Kaneva, W. Chen, Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode, Biosens. Bioelectron. 14(1) (1999) 77-85.[2] S.M. Robatjazi, S.A. Shojaosadati, R. Khalilzadeh, E.V. Farahani, N. Balochi, Immobilization of magnetic modified Flavobacterium ATCC 27551 using magnetic field and evaluation of the enzyme stability of immobilized bacteria, Bioresour. Technol. 104(2012) 6-11.[3] G. Farnoosh, A.M. Latifi, A review on engineering of organophosphorus hydrolase (OPH) enzyme, J. Appl. Biotechnol. Rep. 1(1) (2014) 1-10.[4] Y. Gao, Y.B. Truong, P. Cacioli, P. Butler, I.L. Kyratzis, Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles, Enzym. Microb. Technol. 54(2014) 38-44.[5] R. Erginer, L. Toppare, S. Alkan, U. Bakir, Immobilization of invertase in functionalized copolymer matrices, React. Funct. Polym. 45(3) (2000) 227-233.[6] D. Kayrak-Talay, U. Akman, O. Hortacsu, Glucose oxidase immobilization on conducting polymers in supercritical CO2 environment:an exploratory study, J. Supercrit. Fluids 42(2) (2007) 273-281.[7] S.M. Robatjazi, S.A. Shojaosadati, R. Khalilzadeh, E.V. Farahani, Optimization of the covalent coupling and ionic adsorption of magnetic nanoparticles on Flavobacterium ATCC 27551 using the Taguchi method, Biocatal. Biotransform. 28(5-6) (2010) 304-312.[8] X. Li, X. Wang, G. Ye, W. Xia, X. Wang, Polystyrene-based diazonium salt as adhesive:a new approach for enzyme immobilization on polymeric supports, Polymer 51(4) (2010) 860-867.[9] C. Pezzella, M.E. Russo, A. Marzocchella, P. Salatino, G. Sannia, Immobilization of a Pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation, Biomed. Res. Int. 2014(2014), 308613. (11 pp.).[10] I. Stolarzewicz, E. Biaecka-Florjanczyk, E. Majewska, J. Krzyczkowska, Immobilization of yeast on polymeric supports, Chem. Biochem. Eng. Q. 25(1) (2011) 135-144.[11] D.H. Zhang, L.X. Yuwen, L.J. Peng, Parameters affecting the performance of immobilized enzyme, J. Chem. 2013(2013), 946248. (7 pp.).[12] Y. Liu, J.Y. Chen, Enzyme immobilization on cellulose matrixes, J. Bioact. Compat. Polym. 31(6) (2016) 1-15.[13] S. Varavinit, N. Chaokasem, S. Shobsngob, Immobilization of a thermostable alpha amylase, ScienceAsia 28(2002) 247-251.[14] J. Aniulyte, J. Bryjak, J. Liesiene, Activation of cellulose-based carriers with pentaethylenehexamine, Proc. Est. Acad. Sci. Chem. 55(2) (2006) 61-69.[15] S. Sulaiman, M.N. Mokhtar, M.N. Naim, A.S. Baharuddin, A. Sulaiman, A review:potential usage of cellulose nanofibers (CNFs) for enzyme immobilization via covalent interactions, Appl. Biochem. Biotechnol. 175(4) (2015) 1817-1842.[16] D. Stollner, F.W. Scheller, A. Warsinke, Activation of cellulose membranes with 1,1'-carbonyldiimidazole or 1-cyano-4-dimethylaminopyridinium tetrafluoroborate as a basis for the development of immunosensors, Anal. Biochem. 304(2) (2002) 157-165.[17] S. Nisha, K.S. Arun, N. Gobi, A review on methods, application and properties of immobilized enzyme, Chem. Sci. Rev. Lett. 1(3) (2012) 148-155.[18] X. Liu, L. Lei, Y. Li, H. Zhu, Y. Cui, H. Hu, Preparation of carriers based on magnetic nanoparticles grafted polymer and immobilization for lipase, Biochem. Eng. J. 56(3) (2011) 142-149.[19] K.A. Brown, Phosphotriesterases of flavobacterium sp, Soil Biol. Biochem. 12(2) (1980) 105-112.[20] S.C. Wu, Y.K. Lia, Application of bacterial cellulose pellets in enzyme immobilization, J. Mol. Catal. B Enzym. 54(3-4) (2008) 103-108.[21] M.N. Belgacem, A. Gandini, Surface modification of cellulose fibres, Polim. Cienc. Tecnol. 15(2) (2005) 114-121.[22] C. Aymard, A. Belarbi, Kinetics of thermal deactivation of enzymes:a simple three parameters phenomenological model can describe the decay of enzyme activity, irrespectively of the mechanism, Enzym. Microb. Technol. 27(8) (2000) 612-618.[23] F. Secundo, Conformational changes of enzymes upon immobilization, Chem. Soc. Rev. 42(15) (2013) 6250-6261.[24] U. Guzik, K. Hupert-Kocurek, D. Wojcieszynska, Immobilization as a strategy for improving enzyme properties-application to oxidoreductases, Molecules 19(7) (2014) 8995-9018.[25] S. Nigam, S. Mehrotra, B. Vani, R. Mehrotra, Lipase immobilization techniques for biodiesel production:an overview, Int. J. Renew. Energy Biofuels 2014(2014), 664708. (16 pp.).[26] M. Misson, H. Zhang, B. Jin, Nanobiocatalyst advancements and bioprocessing applications, J. R. Soc. Interface 12(102) (2015) 1-20.[27] O. Alptekin, S.S. Tukel, D. Yildirim, D. Alagoz, Covalent immobilization of catalase onto spacer arm attached modified florisil:characterization and application to batch and plug-flow type reactor systems, Enzym. Microb. Technol. 49(6-7) (2011) 547-554.[28] S. Karav, J.L. Cohen, D. Barile, J.M. de Moura Bell, Recent advances in immobilization strategies for glycosidases, Biotechnol. Prog. 33(1) (2017) 104-112.[29] K. Singh, A.M. Kayastha, Optimal immobilization of α-amylase from wheat (Triticum aestivum) onto DEAE-cellulose using response surface methodology and its characterization, J. Mol. Catal. B Enzym. 104(2014) 75-81.[30] N.R. Mohamad, N.H.C. Marzuki, N.A. Buang, F. Huyop, R.A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnol. Biotechnol. Equip. 29(2) (2015) 205-220.[31] D.H. Zhang, Y.Q. Li, L.J. Peng, N. Chen, Lipase immobilization on magnetic microspheres via spacer arms:effect of steric hindrance on the activity, Biotechnol. Bioprocess Eng. 19(5) (2014) 838-843.[32] M.A. Rahman, U. Culsum, A. Kumar, H. Gao, N. Hu, Immobilization of a novel cold active esterase onto Fe3O4~ cellulosenano-composite enhances catalytic properties, Int. J. Biol. Macromol. 87(2016) 488-497.[33] H.C. Chan, C.H. Chia, S. Zakaria, I. Ahmad, A. Dufresne, Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood, Bioresources 8(1) (2013) 785-794.[34] Y. Sun, L. Lin, H. Deng, J. Li, B. He, R. Sun, P. Ouyang, Structural changes of bamboo cellulose in formic acid, Bioresources 3(2) (2008) 297-315.[35] B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, O. Krim, Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite:comparative study, world, J. Environ. Eng. 3(4) (2015) 95-110.[36] T. Kondo, The assignment of IR absorption bands due to free hydroxyl groups in cellulose, Cellulose 4(1997) 281-292.[37] M.M.M. Elnashar, M.E. Hassan, Novel epoxy activated hydrogels for solving lactose intolerance, Biomed. Res. Int. 2014(2014), 817985.[38] E. Cakmakci, O. Danis, S. Demir, Y. Mulazim, M.V. Kahraman, Alpha-amylase immobilization on epoxy containing thiolene photocurable materials, J. Microbiol. Biotechnol. 23(2) (2013) 205-210.[39] S. Boufi, M. Rei Vilar, V. Parra, A.M. Ferraria, A.M. Botelho do Rego, Grafting of porphyrins on cellulose nanometric films, Langmuir 24(14) (2008) 7309-7315.[40] S. Alila, A.M. Ferraria, A.M. Botelho do Rego, S. Boufi, Controlled surface modification of cellulose fibers by amino derivatives using N,N'-carbonyldiimidazole as activator, Carbohydr. Polym. 77(3) (2009) 553-562.[41] Y. Wei, H. Luo, Y. Chang, H. Yu, Z. Shen, Reversible immobilization of cephalosporin C acylase on epoxy supports coated with polyethyleneimine, Biocatal. Biotransform. 33(5-6) (2015) 250-259.[42] S. Li, J. Hu, B. Liu, Use of chemically modified PMMA microspheres for enzyme immobilization, Biosystems 77(1-3) (2004) 25-32.[43] J. Chung, E.T. Hwang, H. Gang, M.B. Gu, Magnetic-separable robust microbeads using a branched polymer for stable enzyme immobilization, React. Funct. Polym. 73(1) (2013) 39-45.[44] H. Wu, C. Zhang, Y. Liang, J. Shi, X. Wang, Z. Jiang, Catechol modification and covalent immobilization of catalase on titania submicrospheres, J. Mol. Catal. B Enzym. 92(2013) 44-50.[45] R.D. Richins, A. Mulchandani, W. Chen, Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes, Biotechnol. Bioeng. 69(6) (2000) 591-596.[46] K. El-Boubbou, D.A. Schofield, C.C. Landry, Enhanced enzymatic thermal stability and activity in functionalized mesoporous silica monitored by 31P NMR, Adv. Healthc. Mater. 1(2) (2012) 183-188.[47] P.B. Dennis, A.Y. Walker, M.B. Dickerson, D.L. Kaplan, R.R. Naik, Stabilization of organophosphorus hydrolase by entrapment in silk fibroin:formation of a robust enzymatic material suitable for surface coatings, Biomacromolecules 13(7) (2012) 2037-2045.[48] J.K. Raynes, F.G. Pearce, S.J. Meade, J.A. Gerrard, Immobilization of organophosphate hydrolase on an amyloid fibril nanoscaffold:towards bioremediation and chemical detoxification, Biotechnol. Prog. 27(2) (2011) 360-367.[49] K.E. LeJeune, A.J. Mesiano, S.B. Bower, J.K. Grimsley, J.R. Wild, A.J. Russell, Dramatically stabilized phosphotriesterase-polymers for nerve agent degradation, Biotechnol. Bioeng. 54(2) (1997) 105-114.[50] B. Karagoz, G. Bayramoglu, B. Altintas, N. Bicak, M.Y. Arica, Amine functional monodisperse microbeads via precipitation polymerization of N-vinyl formamide:immobilized laccase for benzidine based dyes degradation, Bioresour. Technol. 102(13) (2011) 6783-6790.[51] P.M.B. Chagas, J.A. Torres, M.C. Silva, F.G.E. Nogueira, C.D. Santos, A.D. Correa, Catalytic stability of turnip peroxidase in free and immobilized form on chitosan beads, Int. J. Curr. Microbiol. Appl. Sci. 3(11) (2014) 576-595.[52] S.R. Caldwell, F.M. Raushel, Detoxification of organophosphate pesticides using an immobilized phosphotriesterase from Pseudomonas diminuta, Biotechnol. Bioeng. 37(2) (1991) 103-109.[53] S.M. Robatjazi, M. Reihani, S. Mahboudi, S.M. Hasanpour, M.A.N. Khalili, Immobilization of organophosphorus hydrolase enzyme on ferric magnetic nanoparticles and investigation of immobilized enzyme stability, J. Microbiol. Biotechnol. Food Sci. 6(6) (2017) 1295-1299.[54] M.M. Milani, A.S. Lotfi, A. Mohsenifar, P. Mikaili, N. Kamelipour, J. Dehghan, Enhancing organophosphorus hydrolase stability by immobilization on chitosan beads containing glutaraldehyde, Res. J. Environ. Toxicol. 9(1) (2015) 34-44.[55] S.K. Falahati-Pour, A.S. Lotfi, G. Ahmadian, A. Baghizadeh, Covalent immobilization of recombinant organophosphorus hydrolase on spores of Bacillus subtilis, J. Appl. Microbiol. 118(4) (2015) 976-988.[56] H.Y. Zeng, X.Y. Liu, P. He, D.H. Peng, B. Fan, K. Xia, Lipase adsorption on woven nylon-6 membrane:optimization, kinetic and thermodynamic analyses, Biocatal. Biotransform. 32(3) (2014) 188-197.[57] E. Fatarella, D. Spinelli, M. Ruzzante, R. Pogni, Nylon 6 film and nanofiber carriers:preparation and laccase immobilization performance, J. Mol. Catal. B Enzym. 102(2014) 41-47.[58] M. Kapoor, R. Rajagopal, Enzymatic bioremediation of organophosphorus insecticides by recombinant organophosphorous hydrolase, Int. Biodeterior. Biodegrad. 65(6) (2011) 896-901.[59] X.Y. Yan, Y.J. Jiang, S.P. Zhang, J. Gao, Y.F. Zhang, Dual-functional OPH-immobilized polyamide nanofibrous membrane for effective organophosphorus toxic agents protection, Biochem. Eng. J. 98(2015) 47-55.[60] S. Rauf, A. Ihsan, K. Akhtar, M.A. Ghauri, M. Rahman, M.A. Anwar, A.M. Khalid, Glucose oxidase immobilization on a novel cellulose acetate-polymethylmethacrylate membrane, J. Biotechnol. 121(3) (2006) 351-360.[61] R. Karami, A. Mohsenifar, S.M. Mesbah Namini, N. Kamelipour, T. Rahmani-Cherati, T. Roodbar Shojaei, M. Tabatabaei, A novel nanobiosensor for the detection of paraoxon using chitosan-embedded organophosphorus hydrolase immobilized on Au nanoparticles, Prep. Biochem. Biotechnol. 46(6) (2016) 559-566.[62] V.A. Pedrosa, S. Paliwal, S. Balasubramanian, D. Nepal, V. Davis, J. Wild, E. Ramanculov, A. Simonian, Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes, Colloids Surf. B:Biointerfaces 77(1) (2010) 69-74. |
[1] | Chunyu Zhang, Yan Sun, Xiaoyan Dong. Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 48-53. |
[2] | Fu Yang, Wenhao Li, Rui Ou, Yutong Lu, Xuexue Dong, Wenlong Tu, Wenjian Zhu, Xuyu Wang, Lulu Li, Aihua Yuan, Jianming Pan. Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 120-133. |
[3] | Qilong Ge, Qi Tian, Sufang Wang, Fang Zhu. Synergistic effects of phosphoric acid modified hydrochar and coal gangue-based zeolite on bioavailability and accumulation of cadmium and lead in contaminated soil [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 150-160. |
[4] | Ke Yang, Shan Zhong, Hairong Yue, Siyang Tang, Kui Ma, Changjun Liu, Kai Qiao, Bin Liang. Application of pulsed chemical vapor deposition on the SiO2-coated TiO2 production within a rotary reactor at room temperature [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 22-31. |
[5] | Xin Ren, Li Leng, Yueqiang Cao, Jing Zhang, Xuezhi Duan, Xueqing Gong, Jinghong Zhou, Xinggui Zhou. Enhanced recycling performance of bimetallic Ir-Re/SiO2 catalyst by amberlyst-15 for glycerol hydrogenolysis [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 171-181. |
[6] | Shiqi Yang, Zhentao Wang, Qian Kong, Bin Li, Junfeng Wang. Visualization on electrified micro-jet instability from Taylor cone in electrohydrodynamic atomization [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 456-465. |
[7] | Wanqiao Liang, Jihuan Huang, Penny Xiao, Ranjeet Singh, Jining Guo, Leila Dehdari, Gang Kevin Li. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 335-342. |
[8] | Zhenhao Shen, Chongwei Ma, Darui Wang, Junlin He, Hongmin Sun, Zhirong Zhu, Weimin Yang. Shape-selective alkylation of benzene with ethylene over a core-shell ZSM-5@MCM-41 composite material [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 64-71. |
[9] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
[10] | Huawei Zhu, Haifeng Yu, Zhaofeng Yang, Hao Jiang, Chunzhong Li. Tungsten and phosphate polyanion co-doping of Ni-ultrahigh cathodes greatly enhancing crystal structure and interface stability [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 144-151. |
[11] | Ce Du, Linet Gapu Chizema, Emmerson Hondo, Mingliang Tong, Qingxiang Ma, Xinhua Gao, Ruiqin Yang, Peng Lu, Noritatsu Tsubaki. One-step conversion of syngas to light olefins over bifunctional metal-zeolite catalyst [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 101-110. |
[12] | Chen Xu, Zhenyi Du, Shiqi Yang, Hongda Ma, Jie Feng. Effects of inherent potassium on the catalytic performance of Ni/biochar for steam reforming of toluene as a tar model compound [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 189-195. |
[13] | Shiya He, Zhimin You, Xin Jin, Yi Wu, Cheng Chen, He Zhao, Jian Shen. Continuous generation of lattice oxygen via redox engineering for boosting toluene degradation performances [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 258-266. |
[14] | Xinling Xie, Xiaona Zhao, Xuan Luo, Tongming Su, Youquan Zhang, Zuzeng Qin, Hongbing Ji. Mechanically activated starch magnetic microspheres for Cd(II) adsorption from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 40-49. |
[15] | Mengqian Xie, Fangqin Dai, Yaojie Tu. A numerical study of accelerated moderate or intense low-oxygen dilution (MILD) combustion stability for methane in a lab-scale furnace by off-stoichiometric combustion technology [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 108-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||