Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (11): 2255-2265.DOI: 10.1016/j.cjche.2018.05.024
• Special issue of Carbon Capture, Utilisation and Storage • Previous Articles Next Articles
Hai Yu
Received:
2017-12-13
Revised:
2018-03-14
Online:
2018-12-10
Published:
2018-11-28
Contact:
Hai Yu
Hai Yu
通讯作者:
Hai Yu
Hai Yu. Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies[J]. Chin.J.Chem.Eng., 2018, 26(11): 2255-2265.
Hai Yu. Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2255-2265.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.05.024
[1] International Energy Agency (IEA), Energy Technology Perspectives 2017-Catalysing Energy Technology Transformations, 2017.[2] Boundary dam carbon capture and storage, https://www.globalccsinstitute.com/projects/boundary-dam-carbon-capture-and-storage-project, Accessed date:12 March 2018.[3] Global CCS Institute, CO2 capture technologies:Post combustion capture (PCC), http://hub.globalccsinstitute.com/sites/default/files/publications/29721/co2-capture-technologies-pcc.pdf, Accessed date:12 March 2018.[4] Petra nova carbon capture, https://www.globalccsinstitute.com/projects/petranova-carbon-capture-project, Accessed date:12 March 2018.[5] IEA, Integrated carbon capture and storage project at Saskpower's Boundary Dam Power Station, http://www.ieaghg.org/docs/General_Docs/Reports/2015-06.pdf, Accessed date:12 March 2018.[6] MIT, Boundary dam fact sheet:carbon dioxide capture and storage project, https://sequestration.mit.edu/tools/projects/boundary_dam.html, Accessed date:25 November 2017.[7] S. Reddy, J.R. Scherffius, J. Yonkoski, P. Radgen, H. Rode, Initial results from Fluor's CO2 capture demonstration plant using Econamine FG PlusSM technology at E.ON Kraftwerke's Wilhelmshaven Power Plant, Energy Procedia 37(2013) 6216-6225.[8] B. Baburao, S. Bedell, P. Restrepo, D. Schmidt, C. Schubert, B. Debolt, I. Haji, F. Chopin, Advanced amine process technology operations and results from demonstration facility at EDF Le Havre, Energy Procedia 63(2014) 6173-6187.[9] J.W. Gayheart, S.A. Moorman, T.R. Parsons, C.W. Poling, Babcock & Wilcox Power Generation Group, Inc.'s, RSATTM process and field demonstration of the OptiCapTM advanced solvent at the US-DOE's National Carbon Capture Center, Energy Procedia 37(2013) 1951-1967.[10] O. Gorset, J.N. Knudsen, O.M. Bade, I. Askestad, Results from testing of Aker Solutions advanced amine solvents at CO2 Technology Centre Mongstad, Energy Procedia 63(2014) 6267-6280.[11] Aker solutions starts pioneering CO2 capture project in Norway, http://akersolutions.com/news/news-archive/2016/aker-solutions-starts-pioneering-co2-capture-project-in-norway, Accessed date:12 March 2018.[12] Frequently asked questions for Siemens PostcapTM CO2 capture technology, http://www.energy.siemens.com/mx/pool/hq/power-generation/power-plants/carboncapture-solutions/FAQ-summary%202014_07_24-revOR.pdf, Accessed date:12 March 2018.[13] NETL, Post-combustion solvents, http://www.netl.doe.gov/File%20Library/Research/Coal/carbon%20capture/handbook/CO2-Capture-Tech-Update-2013-PostCombustion-Solvents.pdf (accessed on March 1220187).[14] E. Chen, Y. Zhang, D. Sachde, Y.J. Lin, G.T. Rochelle, Pilot plant results for 5 m piperazine with the advanced flash stripper, http://ieaghg.org/docs/General_Docs/PCCC3_PDF/5_PCCC3_6_Chen.pdf, Accessed date:12 March 2018.[15] J. Tollefson, Low-cost carbon-capture project sparks interest, Nature 469(2011) 276-277.[16] CO2CRC Limited, UNO MK3-New generation carbon capture, http://old.co2crc.com.au/research/uno_mk3_process.html, Accessed date:12 March 2018.[17] S. Badr, J. Frutiger, K. Hungerbuehler, S. Papadokonstantakis, A framework for the environmental, health and safety hazard assessment for amine-based post combustion CO2 capture, Int. J. Greenhouse Gas Control 56(2017) 202-220.[18] S.A. Mazari, B. Si Ali, B.M. Jan, I.M. Saeed, S. Nizamuddin, An overview of solvent management and emissions of amine-based CO2 capture technology, Int. J. Greenhouse Gas Control 34(2015) 129-140.[19] CO2CRC Limited, Retrofitting Australian gas power plants with post combustion capture, http://www.co2crc.com.au/wp-content/uploads/2017/05/retrofitGasCaptureReport.pdf, Accessed date:12 March 2018.[20] N. Yang, H. Yu, L. Li, D. Xu, W. Han, P. Feron, Aqueous ammonia (NH3) based post combustion CO2 capture:A review, Oil Gas Sci. Technol. 69(2014) 931-945.[21] G. Busca, C. Pistarino, Abatement of ammonia and amines from waste gases:A summary, J. Loss Prev. Process 16(2003) 157-163.[22] Safe Work Australia, Workplace exposure standards for airborne contaminants, https://www.safeworkaustralia.gov.au/system/files/documents/1705/workplaceexposure-standards-airborne-contaminants-v2.pdf 2011, Accessed date:12 March 2018.[23] F. Kozak, A. Petig, E. Morris, R. Rhudy, D. Thimsen, Chilled ammonia process for CO2 capture, Energy Procedia 1(2009) 1419-1426.[24] O. Augustsson, B. Baburao, S. Dube, S. Bedell, P. Strunz, M. Balfe, O. Stallmann, Chilled ammonia process scale-up and lessons learned, Energy Procedia 114(2017) 5593-5615.[25] G. Lombardo, R. Agarwal, J. Askander, Chilled ammonia process at Technology Center Mongstad-First results, Energy Procedia 51(2014) 31-39.[26] H. Jilvero, N.-H. Eldrup, F. Normann, K. Andersson, F. Johnsson, R. Skagestad, Technoeconomic evaluation of an ammonia-based post-combustion process integrated with a state-of-the-art coal-fired power plant, Int. J. Greenhouse Gas Control 31(2014) 87-95.[27] D.P. Hanak, C. Biliyok, V. Manovic, Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process, Appl. Energy 151(2015) 258-272.[28] D.P. Hanak, C. Biliyok, V. Manovic, Rate-based model development, validation and analysis of chilled ammonia process as an alternative CO2 capture technology for coal-fired power plants, Int. J. Greenhouse Gas Control 34(2015) 52-62.[29] H. Yu, G. Qi, Q. Xiang, S. Wang, M. Fang, Q. Yang, L. Wardhaugh, P. Feron, Aqueous ammonia based post combustion capture:Results from pilot plant operation, challenges and further opportunities, Energy Procedia 37(2013) 6256-6264.[30] H. Yu, S. Morgan, A. Allport, A. Cottrell, T. Do, J. Mcgregor, L. Wardhaugh, P. Feron, Results from trialling aqueous NH3 based post-combustion capture in a pilot plant at Munmorah power station:Absorption, Chem. Eng. Res. Des. 89(2011) 1204-1215.[31] K. Li, H. Yu, S. Yan, P. Feron, L. Wardhaugh, M. Tade, Technoeconomic assessment of an advanced aqueous ammonia-based post combustion capture process integrated with a 650-MW coal-fired power station, Environ. Sci. Technol. 50(2016) 10746-10755.[32] K. Li, H. Yu, M. Tade, P. Feron, J. Yu, S. Wang, Process modeling of an advanced NH3 abatement and recycling technology in the ammonia-based CO2 capture process, Environ. Sci. Technol. 48(2014) 7179-7186.[33] K. Li, H. Yu, G. Qi, P. Feron, M. Tade, J. Yu, S. Wang, Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process, Appl. Energy 148(2015) 66-77.[34] A.L. Kohl, R. Nielsen, Gas Purification, 5th ed. Gulf Publishing Company, Houston, Texas, 1997.[35] K. Li, H. Yu, P. Feron, M. Tade, L. Wardhaugh, Technical and energy performance of an advanced, aqueous ammonia-based CO2 capture technology for a 500 MW coal-fired power station, Environ. Sci. Technol. 49(2015) 10243-10252.[36] H. Yu, L. Wardhaugh, P. Feron, Q. Yang, K. Li, M. Tade, L. Li, M. Maeder, Development of an aqueous ammonia-based PCC technology for Australian conditions, Final Report to Australian National Low Emissions Coal Research and Development (ANLEC R&D), 2016.[37] L. Li, W. Conway, G. Puxty, R. Burns, S. Clifford, M. Maeder, H. Yu, The effect of piperazine (PZ) on CO2 absorption kinetics into aqueous ammonia solutions at 25.0℃, Int. J. Greenhouse Gas Control 36(2015) 135-143.[38] Q. Xiang, M. Fang, M. Maeder, H. Yu, Effect of sarcosinate on the absorption kinetics of CO2 into aqueous ammonia solution, Ind. Eng. Chem. Res. 52(2013) 6382-6389.[39] I. Jayaweera, P. Jayaweera, R. Elmore, J. Bao, S. Bhamidi, Update on mixed-salt technology development for CO2 capture from post-combustion power stations, Energy Procedia 63(2014) 640-650.[40] I. Jayaweera, P. Jayaweera, P. Kundu, A. Anderko, K. Thomsen, G. Valenti, D. Bonalumi, S. Lillia, Results from process modeling of the mixed-salt technology for CO2 capture from post-combustion-related applications, Energy Procedia 114(2017) 771-780.[41] I. Jayaweera, P. Jayaweera, Y. Yamasaki, R. Elmore, Mixed salt solutions for CO2 capture, in:P. Feron (Ed.), Absorption-Based Post-Combustion Capture of Carbon Dioxide, Woodhead Publishing 2016, pp. 167-200.[42] C. Makhloufi, E. Lasseuguette, J.C. Remigy, B. Belaissaoui, D. Roizard, E. Favre, Ammonia based CO2 capture process using hollow fiber membrane contactors, J. Membr. Sci. 455(2014) 236-246.[43] C.T. Molina, C. Bouallou, Assessment of different methods of CO2 capture in postcombustion using ammonia as solvent, J. Clean. Prod. 103(2015) 463-468.[44] Z. Cui, D. Demontigny, Experimental study of carbon dioxide absorption into aqueous ammonia with a hollow fiber membrane contactor, J. Membr. Sci. 540(2017) 297-306.[45] M. Zhang, Y. Guo, A novel process for NH3-based CO2 capture by integrating flow-by capacitive ion separation, Int. J. Greenhouse Gas Control 54(2016) 50-58.[46] A. Ullah, M.W. Saleem, W.-S. Kim, Performance and energy cost evaluation of an integrated NH 3-based CO 2 capture-capacitive deionization process, Int. J. Greenhouse Gas Control 66(2017) 85-96.[47] D. Sutter, M. Gazzani, M. Mazzotti, A low-energy chilled ammonia process exploiting controlled solid formation for post-combustion CO2 capture, Faraday Discuss. 192(2016) 59-83.[48] B. Zhao, Y. Su, G. Cui, Post-combustion CO2 capture with ammonia by vortex flowbased multistage spraying:Process intensification and performance characteristics, Energy 102(2016) 106-117.[49] D. Bonalumi, A. Giuffrida, Performance improvement of cooled ammonia-based CO2 capture in combined cycles with gasification of high-sulfur coal, Energy Procedia 114(2017) 6440-6447.[50] K. Jiang, K. Li, H. Yu, Z. Chen, L. Wardhaugh, P. Feron, Advancement of ammonia based post-combustion CO2 capture using the advanced flash stripper process, Appl. Energy 202(2017) 496-506.[51] N. Kittiampon, A. Kaewchada, A. Jaree, Carbon dioxide absorption using ammonia solution in a microchannel, Int. J. Greenhouse Gas Control 63(2017) 431-441.[52] L. Li, W. Conway, R. Burns, M. Maeder, G. Puxty, S. Clifford, H. Yu, Investigation of metal ion additives on the suppression of ammonia loss and CO2 absorption kinetics of aqueous ammonia-based CO2 capture, Int. J. Greenhouse Gas Control 56(2017) 165-172.[53] J.-F. Perez-Calvo, D. Sutter, M. Gazzani, M. Mazzotti, Application of a chilled ammonia-based process for CO2 capture to cement plants, Energy Procedia 114(2017) 6197-6205.[54] D. Sutter, M. Gazzani, J.-F. Perez-Calvo, C. Leopold, F. Milella, M. Mazzotti, Solid formation in ammonia-based processes for CO2 capture-Turning a challenge into an opportunity, Energy Procedia 114(2017) 866-872.[55] M. Fang, Q. Ma, Z. Wang, Q. Xiang, W. Jiang, Z. Xia, A novel method to recover ammonia loss in ammonia-based CO2 capture system:Ammonia regeneration by vacuum membrane distillation, Greenhouse Gases Sci. Technol. 5(2015) 487-498.[56] M. Darestani, V. Haigh, S.J. Couperthwaite, G.J. Millar, L.D. Nghiem, Hollow fibre membrane contactors for ammonia recovery:Current status and future developments, J. Environ. Chem. Eng. 5(2017) 1349-1359. |
[1] | Yaoyao Peng, Lei Song, Siru Lu, Ziyu Su, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 246-256. |
[2] | Xiaomeng Zhao, Xingyu Li, Changjun Liu, Shan Zhong, Houfang Lu, Hairong Yue, Kui Ma, Lei Song, Siyang Tang, Bin Liang. The quasi-activity coefficients of non-electrolytes in aqueous solution with organic ions and its application on the phase splitting behaviors prediction for CO2 absorption [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 316-323. |
[3] | Dongqi An, Yuyao Yang, Weixin Zou, Yandi Cai, Qing Tong, Jingfang Sun, Lin Dong. Insight into the promotional mechanism of Cu modification towards wide-temperature NH3-SCR performance of NbCe catalyst [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 301-309. |
[4] | Lei Shi, Yu Yin, Hong Wu, Rajan Arjan Kalyan Hirani, Xinyuan Xu, Jinqiang Zhang, Nasir Rafique, Abdul Hannan Asif, Shu Zhang, Hongqi Sun. Controllable synthesis of a hollow Cr2O3 electrocatalyst for enhanced nitrogen reduction toward ammonia synthesis [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 358-365. |
[5] | Yonglin Li, He'an Luo, Qiuhong Ai, Kuiyi You, Fei Zhao, Wenlong Xiao. Efficient separation of phenols from coal tar with aqueous solution of amines by liquid-liquid extraction [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 180-188. |
[6] | Piqiang Tan, Xiaoyu Li, Shiyan Wang, Zhiyuan Hu, Diming Lou. Selective catalytic reduction failure of low NH3-NOx ratio [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 231-240. |
[7] | Xin Wang, Siyuan Gao, Jing Wang, Sheng Xu, Hui Li, Kequan Chen, Pingkai Ouyang. The production of biobased diamines from renewable carbon sources: Current advances and perspectives [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 4-13. |
[8] | Zhihao Yi, Jie Sun, Jigang Li, Tian Zhou, Shouping Wei, Hongjia Xie, Yulin Yang. High efficient removal of HCN over porous CuO/CeO2 micro-nano spheres at lower temperature range [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 155-164. |
[9] | Ammar Ali Abd, Samah Zaki Naji, Ahmed Barifcani. Comprehensive evaluation and sensitivity analysis of regeneration energy for acid gas removal plant using single and activated-methyl diethanolamine solvents [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1684-1693. |
[10] | Meinan Zhen, Benru Song, Xiaomei Liu, Radhika Chandankere, Jingchun Tang. Biochar-mediated regulation of greenhouse gas emission and toxicity reduction in bioremediation of organophosphorus pesticide-contaminated soils [J]. Chin.J.Chem.Eng., 2018, 26(12): 2592-2600. |
[11] | Zhiwu Liang, Kaiyun Fu, Raphael Idem, Paitoon Tontiwachwuthikul. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents [J]. , 2016, 24(2): 278-288. |
[12] | WEI Shun'an, ZHANG Hongjing. Calculation of H2O-NH3-CO2 Vapor Liquid Equilibria at High Concentration Conditions [J]. , 2004, 12(1): 134-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||