[1] J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Beyond fossil fuel-driven nitrogen transformations, Science 360(6391) (2018) eaar6611. [2] S.L. Foster, S.I.P. Bakovic, R.D. Duda, S. Maheshwari, R.D. Milton, S.D. Minteer, M.J. Janik, J.N. Renner, L.F. Greenlee, Catalysts for nitrogen reduction to ammonia, Nat. Catal. 1(7) (2018) 490–500. [3] G.Y. Duan, Y.M. Chen, Y. Tang, K.A.M. Gasem, P.Y. Wan, D. Ding, M.H. Fan, Advances in electrocatalytic ammonia synthesis under mild conditions, Prog. Energy Combust. Sci. 81(2020) 100860. [4] X.J. Zhu, S.Y. Mou, Q.L. Peng, Q. Liu, Y.L. Luo, G. Chen, S.Y. Gao, X.P. Sun, Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement, J. Mater. Chem. A 8(4) (2020) 1545–1556. [5] Q.Q. Li, Y.L. Guo, Y. Tian, W.M. Liu, K. Chu, Activating VS2 basal planes for enhanced NRR electrocatalysis: The synergistic role of S-vacancies and B dopants, J. Mater. Chem. A 8(32) (2020) 16195–16202. [6] J. Deng, J.A. Iñiguez, C. Liu, Electrocatalytic nitrogen reduction at low temperature, Joule 2(5) (2018) 846–856. [7] K. Chu, Y.P. Liu, Y.B. Li, Y.L. Guo, Y. Tian, H. Zhang, Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation, Appl. Catal. B: Environ. 264(2020) 118525. [8] K. Chu, J. Wang, Y.P. Liu, Q.Q. Li, Y.L. Guo, Mo-doped SnS2 with enriched Svacancies for highly efficient electrocatalytic N2 reduction: The critical role of the Mo-Sn-Sn trimer, J. Mater. Chem. A 8(15) (2020) 7117–7124. [9] Y.Y. Liu, M.M. Han, Q.Z. Xiong, S.B. Zhang, C.J. Zhao, W.B. Gong, G.Z. Wang, H. M. Zhang, H.J. Zhao, Ambient ammonia electrosynthesis: Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li–S interactions on MoS2 electrocatalyst, Adv. Energy Mater. 9(14) (2019) 1970042. [10] S.B. Zhang, M. Jin, T.F. Shi, M.M. Han, Q. Sun, Y. Lin, Z.H. Ding, L.R. Zheng, G.Z. Wang, Y.X. Zhang, H.M. Zhang, H.J. Zhao, Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia, Angew. Chem. Int. Ed. Engl. 59(32) (2020) 13423–13429. [11] L. Shi, Y. Yin, S.B. Wang, H.Q. Sun, Rational catalyst design for N2 reduction under ambient conditions: Strategies toward enhanced conversion efficiency, ACS Catal. 10(12) (2020) 6870–6899. [12] T.W. Wu, X.J. Zhu, Z. Xing, S.Y. Mou, C.B. Li, Y.X. Qiao, Q. Liu, Y.L. Luo, X.F. Shi, Y. N. Zhang, X.P. Sun, Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping, Angew. Chem. Int. Ed. Engl. 58(51) (2019) 18449–18453. [13] C. Chen, D.F. Yan, Y. Wang, Y.Y. Zhou, Y.Q. Zou, Y.F. Li, S.Y. Wang, B.N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency, Small 15(7) (2019) 1805029. [14] J.Y. Zheng, Y.H. Lyu, M. Qiao, R.L. Wang, Y.Y. Zhou, H. Li, C. Chen, Y.F. Li, H.J. Zhou, S.P. Jiang, S.Y. Wang, Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency, Chem 5(3) (2019) 617–633. [15] K. Chu, Y.H. Cheng, Q.Q. Li, Y.P. Liu, Y. Tian, Fe-doping induced morphological changes, oxygen vacancies and Ce3+–Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation, J. Mater. Chem. A 8(12) (2020) 5865–5873. [16] Y.Y. Tong, H.P. Guo, D.L. Liu, X. Yan, P.P. Su, J. Liang, S. Zhou, J. Liu, G.Q.M. Lu, S. X. Dou, Rücktitelbild: Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction, Angew. Chem. 132(19) (2020) 7696. [17] J.R. Han, Z.C. Liu, Y.J. Ma, G.W. Cui, F.Y. Xie, F.X. Wang, Y.P. Wu, S.Y. Gao, Y.H. Xu, X.P. Sun, Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst, Nano Energy 52(2018) 264–270. [18] H.Y. Jin, L.Q. Li, X. Liu, C. Tang, W.J. Xu, S.M. Chen, L. Song, Y. Zheng, S.Z. Qiao, Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction, Adv. Mater. 31(32) (2019) 1902709. [19] Y. Wang, M.M. Shi, D. Bao, F.L. Meng, Q. Zhang, Y.T. Zhou, K.H. Liu, Y. Zhang, J.Z. Wang, Z.W. Chen, D.P. Liu, Z. Jiang, M. Luo, L. Gu, Q.H. Zhang, X.Z. Cao, Y. Yao, M.H. Shao, Y. Zhang, X.B. Zhang, J.G. Chen, J.M. Yan, Q. Jiang, Generating defectrich bismuth for enhancing the rate of nitrogen electroreduction to ammonia, Angew. Chem. Int. Ed. Engl. 58(28) (2019) 9464–9469. [20] K. Chu, Y.P. Liu, Y.H. Cheng, Q.Q. Li, Synergistic boron-dopants and boroninduced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction, J. Mater. Chem. A 8(10) (2020) 5200–5208. [21] H.J. Wang, H.J. Yu, Z.Q. Wang, Y.H. Li, Y. Xu, X.N. Li, H.R. Xue, L. Wang, Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia, Small 15(6) (2019) e1804769. [22] H.J. Wang, S.L. Liu, H.G. Zhang, S.L. Yin, Y. Xu, X.N. Li, Z.Q. Wang, L. Wang, Three-dimensional Pd-Ag-S porous nanosponges for electrocatalytic nitrogen reduction to ammonia, Nanoscale 12(25) (2020) 13507–13512. [23] Z. Xing, W.H. Kong, T.W. Wu, H.T. Xie, T. Wang, Y.L. Luo, X.F. Shi, A.M. Asiri, Y.N. Zhang, X.P. Sun, Hollow Bi2MoO6 sphere effectively catalyzes the ambient electroreduction of N2 to NH3, ACS Sustain. Chem. Eng. 7(15) (2019) 12692–12696. [24] R. Zhang, H.R. Guo, L. Yang, Y. Wang, Z.G. Niu, H. Huang, H.Y. Chen, L. Xia, T.S. Li, X.F. Shi, X.P. Sun, B.H. Li, Q. Liu, Electrocatalytic N2 fixation over hollow VO2 microspheres at ambient conditions, ChemElectroChem 6(4) (2019) 1014–1018. [25] M. Nazemi, S.R. Panikkanvalappil, M.A. El-Sayed, Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages, Nano Energy 49(2018) 316–323. [26] M. Nazemi, M.A. El-Sayed, Plasmon-enhanced photo(electro)chemical nitrogen fixation under ambient conditions using visible light responsive hybrid hollow Au-Ag2O nanocages, Nano Energy 63(2019) 103886. [27] L.B. Zeng, X.Y. Li, S. Chen, J.L. Wen, W. Huang, A.C. Chen, Unique hollow Ni–Fe@MoS2 nanocubes with boosted electrocatalytic activity for N2 reduction to NH3, J. Mater. Chem. A 8(15) (2020) 7339–7349. [28] W.H. Guo, Z.B. Liang, J.L. Zhao, B.J. Zhu, K.T. Cai, R.Q. Zou, Q. Xu, Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature, Small Methods 2(12) (2018) 1800204. [29] T. Liu, L.Y. Zhang, B. Cheng, J.G. Yu, Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage, Adv. Energy Mater. 9(17) (2019) 1803900.1–1803900.55. [30] J.Y. Wang, Y. Cui, D. Wang, Design of hollow nanostructures for energy storage, conversion and production, Adv. Mater. 31(38) (2019) e1801993. [31] G. Prieto, H. Tüysüz, N. Duyckaerts, J. Knossalla, G.H. Wang, F. Schüth, Hollow nano- and microstructures as catalysts, Chem. Rev. 116(22) (2016) 14056–14119. [32] Q. Zhang, W.S. Wang, J. Goebl, Y.D. Yin, Self-templated synthesis of hollow nanostructures, Nano Today 4(6) (2009) 494–507. [33] Y.D. Liu, J. Goebl, Y.D. Yin, Templated synthesis of nanostructured materials, Chem. Soc. Rev. 42(7) (2013) 2610–2653. [34] Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li, X. Sun, Highperformance electrohydrogenation of n2 to nh3 catalyzed by multishelled hollow cr2o3 microspheres under ambient conditions, ACS Catal. 8(2018) 8540–8544. [35] H.T. Du, X.X. Guo, R.M. Kong, F.L. Qu, Cr2O3 nanofiber: A high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions, Chem. Commun. (Camb.) 54(91) (2018) 12848–12851. [36] L. Xia, B.H. Li, Y. Zhang, R. Zhang, L. Ji, H.Y. Chen, G.W. Cui, H.G. Zheng, X.P. Sun, F.Y. Xie, Q. Liu, Cr2O3 nanoparticle-reduced graphene oxide hybrid: A highly active electrocatalyst for N2 reduction at ambient conditions, Inorg. Chem. 58(4) (2019) 2257–2260. [37] E.C. Chen, Y.W. Lin, T.M. Wu, Fabrication, morphology and thermal degradation behaviors of conductive polyaniline coated monodispersed polystyrene particles, Polym. Degrad. Stab. 94(4) (2009) 550–557. [38] Q. Li, J. Guo, H. Zhu, F. Yan, Space-confined synthesis of ZIF-67 nanoparticles in hollow carbon nanospheres for CO2 adsorption, Small 15(8) (2019) e1804874. [39] L. Shi, Y. Yin, S.J. Wang, X.Y. Xu, H. Wu, J.Q. Zhang, S.B. Wang, H.Q. Sun, Rigorous and reliable operations for electrocatalytic nitrogen reduction, Appl. Catal. B: Environ. 278(2020) 119325. [40] W. Qiu, X.Y. Xie, J. Qiu, W.H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A.M. Asiri, G. Cui, B. Tang, X. Sun, High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst, Nat. Commun. 9(1) (2018) 3485. [41] K. Ba, G.L. Wang, T. Ye, X.R. Wang, Y.Y. Sun, H.Q. Liu, A.Q. Hu, Z.Y. Li, Z.Z. Sun, Single faceted two-dimensional Mo2C electrocatalyst for highly efficient nitrogen fixation, ACS Catal. 10(14) (2020) 7864–7870. [42] D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi, Y. Zhang, J.M. Yan, Q. Jiang, X. B. Zhang, Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle, Adv. Mater. 29(3) (2017) 1604799. [43] H.M. Liu, S.H. Han, Y. Zhao, Y.Y. Zhu, X.L. Tian, J.H. Zeng, J.X. Jiang, B.Y. Xia, Y. Chen, Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction, J. Mater. Chem. A 6(7) (2018) 3211–3217. [44] Y.X. Lin, S.N. Zhang, Z.H. Xue, J.J. Zhang, H. Su, T.J. Zhao, G.Y. Zhai, X.H. Li, M. Antonietti, J.S. Chen, Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles, Nat. Commun. 10(1) (2019) 4380. [45] L. Zhang, X.Q. Ji, X. Ren, Y.J. Ma, X.F. Shi, Z.Q. Tian, A.M. Asiri, L. Chen, B. Tang, X. P. Sun, Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies, Adv. Mater. 30(28) (2018) e1800191. [46] P.Z. Chen, N. Zhang, S.B. Wang, T.P. Zhou, Y. Tong, C.C. Ao, W.S. Yan, L.D. Zhang, W.S. Chu, C.Z. Wu, Y. Xie, Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis, PNAS 116(14) (2019) 6635–6640. [47] K. Chu, Y.P. Liu, Y.B. Li, H. Zhang, Y. Tian, Efficient electrocatalytic N2 reduction on CoO quantum dots, J. Mater. Chem. A 7(9) (2019) 4389–4394. [48] N. Cao, Z. Chen, K.T. Zang, J. Xu, J. Zhong, J. Luo, X. Xu, G.F. Zheng, Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation, Nat. Commun. 10(1) (2019) 2877. [49] X.X. Zhang, T.W. Wu, H.B. Wang, R.B. Zhao, H.Y. Chen, T. Wang, P.P. Wei, Y.L. Luo, Y.N. Zhang, X.P. Sun, Boron nanosheet: An elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media, ACS Catal. 9(5) (2019) 4609–4615. [50] X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Boron-doped graphene for electrocatalytic n2 reduction, Joule 2(2018) 1610–1622. [51] S. Mukherjee, D.A. Cullen, S. Karakalos, K.X. Liu, H. Zhang, S. Zhao, H. Xu, K.L. More, G.F. Wang, G. Wu, Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes, Nano Energy 48(2018) 217–226. [52] L. Xia, X.F. Wu, Y. Wang, Z.G. Niu, Q. Liu, T.S. Li, X.F. Shi, A.M. Asiri, X.P. Sun, Sdoped carbon nanospheres: An efficient electrocatalyst toward artificial N2 fixation to NH3, Small Methods 3(6) (2019) 1800251. [53] B.H.R. Suryanto, H.L. Du, D.B. Wang, J. Chen, A.N. Simonov, D.R. MacFarlane, Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia, Nat. Catal. 2(4) (2019) 290–296. [54] K. Chu, Y.-P. Liu, Y.-B. Li, Y.-L. Guo, Y. Tian, Two-dimensional (2d)/2d interface engineering of a MOS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation, ACS Appl. Mater. Interfaces 12(2020) 7081–7090. [55] X.F. Li, Q.K. Li, J. Cheng, L.L. Liu, Q. Yan, Y.C. Wu, X.H. Zhang, Z.Y. Wang, Q. Qiu, Y. Luo, Conversion of dinitrogen to ammonia by FeN3-embedded graphene, J. Am. Chem. Soc. 138(28) (2016) 8706–8709. |