[1] M. Boronat, C. Martínez-Sánchez, D. Law, A. Corma, Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO, J. Am. Chem. Soc. 130(48) (2008) 16316–16323. [2] Y.Y. Chu, A.Y. Lo, C. Wang, F. Deng, Origin of high selectivity of dimethyl ether carbonylation in the 8-membered ring channel of mordenite zeolite, J. Phys. Chem. C 123(25) (2019) 15503–15512. [3] A. Bhan, A.D. Allian, G.J. Sunley, D.J. Law, E. Iglesia, Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls, J. Am. Chem. Soc. 129(16) (2007) 4919–4924. [4] H.M. Zhan, S.Y. Huang, Y. Li, J. Lv, S.P. Wang, X.B. Ma, Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR, Catal. Sci. Technol. 5(9) (2015) 4378–4389. [5] P. Lu, G.H. Yang, Y. Tanaka, N. Tsubaki, Ethanol direct synthesis from dimethyl ether and syngas on the combination of noble metal impregnated zeolite with Cu/ZnO catalyst, Catal. Today 232(2014) 22–26. [6] S.R. Wang, W.W. Guo, L.J. Zhu, H.X. Wang, K.Z. Qiu, K.F. Cen, Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange, J. Phys. Chem. C 119(1) (2015) 524–533. [7] S.Y. Li, K. Cai, Y. Li, S.P. Liu, M. Yu, Y. Wang, X.B. Ma, S.Y. Huang, Identifying the active silver species in carbonylation of dimethyl ether over Ag–HMOR, ChemCatChem 12(12) (2020) 3290–3297. [8] Z. Jin, X.F. Yi, L. Wang, S.D. Xu, C.T. Wang, Q.M. Wu, L.X. Wang, A.M. Zheng, F.S. Xiao, Metal-acid interfaces enveloped in zeolite crystals for cascade biomass hydrodeoxygenation, Appl. Catal. B: Environ. 254(2019) 560–568. [9] Y. Li, S.Y. Huang, Z.Z. Cheng, S.P. Wang, Q.F. Ge, X.B. Ma, Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR, J. Catal. 365(2018) 440–449. [10] Y.T. Cheng, J. Jae, J. Shi, W. Fan, G.W. Huber, Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts, Angew. Chem. Int. Ed. 51(6) (2012) 1387–1390. [11] J.F. Wu, S.M. Yu, W.D. Wang, Y.X. Fan, S. Bai, C.W. Zhang, Q. Gao, J. Huang, W. Wang, Mechanistic insight into the formation of acetic acid from the direct conversion of methane and carbon dioxide on zinc-modified H-ZSM-5 zeolite, J. Am. Chem. Soc. 135(36) (2013) 13567–13573. [12] Z. Wu, S. Goel, M. Choi, E. Iglesia, Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity, J. Catal. 311(2014) 458–468. [13] S. Goel, Z.J. Wu, S.I. Zones, E. Iglesia, Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites, J. Am. Chem. Soc. 134(42) (2012) 17688–17695. [14] M. Choi, Z.J. Wu, E. Iglesia, Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation, J. Am. Chem. Soc. 132(26) (2010) 9129–9137. [15] L.C. Liu, U. Díaz, R. Arenal, G. Agostini, P. Concepción, A. Corma, Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D, Nat. Mater. 16(1) (2017) 132–138. [16] J. Zhang, L. Wang, B.S. Zhang, H.S. Zhao, U. Kolb, Y.H. Zhu, L.M. Liu, Y. Han, G.X. Wang, C.T. Wang, D.S. Su, B.C. Gates, F.S. Xiao, Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth, Nat. Catal. 1(7) (2018) 540–546. [17] J.P. Tessonnier, O. Ersen, G. Weinberg, C. Pham-Huu, D.S. Su, R. Schlögl, Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes, ACS Nano 3(8) (2009) 2081–2089. [18] H.R. Yue, Y.J. Zhao, S. Zhao, B. Wang, X.B. Ma, J.L. Gong, A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions, Nat. Commun. 4(1) (2013) 1–7. [19] X. Feng, Y.B. Liu, Y.C. Li, C.H. Yang, Z.H. Zhang, X.Z. Duan, X.G. Zhou, D. Chen, Au/TS-1 catalyst for propene epoxidation with H2/O2: a novel strategy to enhance stability by tuning charging sequence, AIChE J. 62(11) (2016) 3963–3972. [20] M.X. Wang, S.Y. Huang, J. Lü, Z.Z. Cheng, Y. Li, S.P. Wang, X.B. Ma, Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether, Chin. J. Catal. 37(9) (2016) 1530–1537. [21] C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal. 141(2) (1993) 347–354. [22] B.L. Su, V. Norberg, Quantitative characterisation of H-Mordenite zeolite structure by infrared spectroscopy using benzene adsorption, Colloids Surf. A: Physicochem. Eng. Aspects 187–188(2001) 311–318. [23] H.F. Xue, X.M. Huang, E.S. Zhan, M. Ma, W.J. Shen, Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation, Catal. Commun. 37(2013) 75–79. [24] J.J. Gabla, S.R. Mistry, K.C. Maheria, An efficient green protocol for the synthesis of tetra-substituted imidazoles catalyzed by zeolite BEA: effect of surface acidity and polarity of zeolite, Catal. Sci. Technol. 7(21) (2017) 5154–5167. [25] D. Trong On, S.M.J. Zaidi, S. Kaliaguine, Stability of mesoporous aluminosilicate MCM-41 under vapor treatment, acidic and basic conditions, Microporous Mesoporous Mater. 22(1–3) (1998) 211–224. [26] S.G. Aspromonte, R.M. Serra, E.E. Miró, A.V. Boix, AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes, Appl. Catal. A: Gen. 407(1–2) (2011) 134–144. [27] A.M. Fonseca, I.C. Neves, Study of silver species stabilized in different microporous zeolites, Microporous Mesoporous Mater. 181(2013) 83–87. [28] V. Rakic, V. Dondur, R. Hercigonja V,, FTIR study of carbon monoxide adsorption on ion-exchanged X, Y and mordenite type zeolites, J. Serbian Chem. Soc. 68(4–5) (2003) 409–416. [29] Y. Li, S.Y. Huang, Z.Z. Cheng, K. Cai, L.D. Li, E. Milan, J. Lv, Y. Wang, Q. Sun, X.B. Ma, Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Brønsted acids, Appl. Catal. B: Environ. 256(2019) 117777. [30] Z. Wang, Q. Sun, D. Wang, Z. Hong, Z.P. Qu, X.B. Li, Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen, Sep. Purif. Technol. 209(2019) 1016–1026. [31] Z.Z. Cheng, S.Y. Huang, Y. Li, J. Lv, K. Cai, X.B. Ma, Deactivation kinetics for the carbonylation of dimethyl ether to methyl acetate on H-MOR, Ind. Eng. Chem. Res. 56(46) (2017) 13618–13627. [32] Z.Z. Cheng, S.Y. Huang, Y. Li, K. Cai, Y. Wang, M.Y. Wang, J. Lv, X.B. Ma, Role of brønsted acid sites within 8-MR of mordenite in the deactivation roadmap for dimethyl ether carbonylation, ACS Catal. 11(9) (2021) 5647–5657. [33] T. Blasco, M. Boronat, P. Concepción, A. Corma, D. Law, J.A. Vidal-Moya, Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center, Angew. Chem. Int. Ed. Engl. 46(21) (2007) 3938–3941. |