[1] S.T. Gadge, B.M. Bhanage, Recent developments in palladium catalyzed carbonylation reactions, RSC Adv. 4(2013) 10367-10389. [2] X.J. Yang, Y. Hu, H. Bai, M. Feng, Z.G. Yan, S. Cao, B. Yang, Tuning of oxygen species and active Pd2+ species of supported catalysts via morphology and Mn doping in oxidative carbonylation of phenol, Mol. Catal. 457(2018) 1-7. [3] A. Vavasori, L. Toniolo, Multistep electron transfer catalytic system for the oxidative carbonylation of phenol to diphenyl carbonate, J. Mol. Catal. A Chem. 139(1999) 109-119. [4] X.J. Yang, J.Y. Han, Z.P. Du, H. Yuan, F. Jin, Y.X. Wu, Effects of Pb dopant on structure and activity of Pd/K-OMS-2 catalysts for heterogeneous oxidative carbonylation of phenol, Catal. Commun. 11(2010) 643-646. [5] K. Okuyama, J. Sugiyama, R. Nagahata, M. Asai, M. Ueda, K. Takeuchi, Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd-carbene complexes, J. Mol. Catal. A Chem. 203(2003) 21-27. [6] Y.L. Zhang, S.L. Xiang, G.Q. Wang, H. Jiang, C.R. Xiong, Preparation and application of coconut shell activated carbon immobilized palladium complexes, Catal. Sci. Technol. 4(2014) 1055-1063. [7] H.Y. Song, E.D. Park, J.S. Lee, Oxidative carbonylation of phenol to diphenyl carbonate over supported palladium catalysts, J. Mol. Catal. A Chem. 154(2000) 243-250. [8] C.F. Yin, J. Zhou, Q.M. Chen, J.Y. Han, Y.X. Wu, X.J. Yang, Deactivation causes of supported palladium catalysts for the oxidative carbonylation of phenol, J. Mol. Catal. A Chem. 424(2016) 377-383. [9] W. Xue, J.C. Zhang, Y.J. Wang, Q. Zhao, X.Q. Zhao, Effect of promoter copper on the oxidative carbonylation of phenol over the ultrafine embedded catalyst PdCuO/SiO2, J. Mol. Catal. A Chem. 232(2005) 77-81. [10] W. Lu, Z.P. Du, H. Yuan, Q.F. Tian, Y.X. Wu, Synthesis of diphenyl carbonate over the magnetic catalysts Pd/La1-xPbxMnO3 (x=0.2-0.7), Chin. J. Chem. Eng. 21(2013) 8-13. [11] N.F. Wang, S.Q. Li, Y.C. Zong, Q. Yao, Sintering inhibition of flame-made Pd/CeO2 nanocatalyst for low-temperature methane combustion, J. Aerosol Sci. 105(2017) 64-72. [12] H. Ha, S. Yoon, K. An, M. Yoo, J. Lee, H.Y. Kim, Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals:Effect of the Au-CeO2 Interface, ACS Catal. 8(2018) 11491-11501. [13] C.T. Campbell, C.H.F. Peden, CHEMISTRY:Oxygen vacancies and catalysis on ceria surfaces, Science 309(2005) 713-714. [14] A. Trovarelli, J. Llorca, Ceria catalysts at nanoscale:How do crystal shapes shape catalysis? ACS Catal. 7(2017) 4716-4735. [15] Z.X. Zhang, Y.H. Wang, J.M. Lu, C.F. Zhang, M. Wang, M.R. Li, X.B. Liu, F. Wang, Conversion of isobutene and formaldehyde to diol using praseodymium-doped CeO2 catalyst, ACS Catal. 6(2016) 8248-8254. [16] R. Ma, S. Zhang, T. Wen, P.C. Gu, L. Li, G.S. Zhao, F.L. Niu, Q.F. Huang, Z.W. Tang, X.K. Wang, A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants, Catal. Today 335(2019) 20-30. [17] E.M. Seftel, M.C. Puscasu, M. Mertens, P. Cool, G. Carja, Fabrication of CeO2/LDHs selfassemblies with enhanced photo-catalytic performance:A case study on ZnSn-LDH matrix, J. Appl. Catal. B-Environ. 164(2015) 251-260. [18] Z.M. Wang, H.Q. Zhang, L.C. Zhou, F. Li, W. Xue, Y.J. Wang, Role of Ce in supported Pd catalyst for oxidative carbonylation of phenol to diphenyl carbonate, CIESC J. 70(2019) 4625-4634. [19] Y. Yuan, Z.M. Wang, H.L. An, W. Xue, Y.J. Wang, Oxidative carbonylation of phenol with PdO/CeO2-nanotube catalysts, Chin. J. Catal. 36(2015) 1142-1154. [20] Z.J. Fu, Z.M. Wang, H.J. Wang, F. Li, W. Xue, Y.J. Wang, Pd catalyst supported on CeO2 nanotubes with enhanced structural stability toward oxidative carbonylation of phenol, RSC Adv. 9(2019) 11356-11364. [21] L.F. Liotta, A. Macaluso, A. Longo, G. Pantaleo, A. Martorana, G. Deganello, Effects of redox treatments on the composition of a ceria-zirconia oxide for application in the three-way catalysis, Appl. Catal. A Gen. 240(2003) 295-307. [22] T. Murota, T. Hasegawa, S. Aozasa, H. Matsui, M. Motoyama, Production method of cerium oxide with high storage capacity of oxygen and its mechanism, J. Alloy. Comp. 193(1993) 298-299. [23] J.X. Liu, Z. Zhao, C.M. Xu, J. Liu, Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis, Chin. J. Catal. 40(2019) 1438-1487. [24] Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, M. Sugiura, X-ray absorption fine structure analysis of local structure of CeO2-ZrO2 mixed oxides with the same composition ratio (Ce/Zr), Catal. Today 74(2002) 225-234. [25] M. Shelef, R.W. McCabe, Twenty -five years after introduction of automotive catalysts:What next? Catal. Today 62(2000) 35-50. [26] M.P. Yeste, J.C. Herna'ndez, S. Bernal, G. Blanco, J.J. Calvino, J.M. Pintado, Redox behavior of thermally aged ceria-zirconia mixed oxides. Role of their surface and bulk structural properties, J. Mater. Chem. 18(2006) 2750——2757. [27] C. Lee, Y. Jeon, T. Kim, T. Kimc, A. Toud, J. Parke, H. Einagaf, Y.G. Shul, Ag-loaded cerium-zirconium soild solution oxide nano-fibrous webs and their catalytic activity for soot and CO oxidation, Fuel 212(2018) 395-404. [28] J.L. Cao, Y. Wang, Z.Y. Yuan, Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/CexZr1-xO2 catalysts for low-temperature CO oxidation, Appl. Catal. B-Environ. 78(2008) 120-128. [29] E. Mamontov, R. Brezny, M. Koranne, T. Egam, Nanoscale heterogeneities and oxygen storage capacity of Ce0.5Zr0.5O2, J. Phys. Chem. B 107(2003) 13007-13014. [30] C.F. Oliveira, F.A.C. Garcia, D.R. Araújo, L.J. Macedo, J.D. Dias, Effects of preparation and structure of cerium-zirconium mixed oxides on diesel soot catalytic combustion, Appl. Catal. A Gen. 413-414(2012) 292-300. [31] D. Devaiah, T. Tsuzuki, C. Aniz, B. Reddy, Enhanced CO and soot oxidation activity over Y-doped ceria-zirconia and ceria-lanthana solid solutions, Catal. Lett. 145(2015) 1206-1216. [32] M. Piumetti, S. Bensaid, N. Russo, D. Fino, Investigations into nanostructured ceriazirconia catalysts for soot combustion, Appl. Catal. B-Environ. 180(2016) 271-282. [33] H. Liu, W.J. Zou, X.L. Xu, X.L. Zhang, Y.Q. Yang, H.J. Yue, Y. Yu, G. Tian, S.H. Feng, The proportion of Ce4+ in surface of CexZr1-xO2 catalysts:The key parameter for direct carboxylation of methanol to dimethyl carbonate, J. CO2 Util. 17(2017) 43-49. [34] A. Gayen, M. Boaro, C. Leitenburg, J. Llorca, A. Trovarelli, Activity, durability and microstructural characterization of ex-nitrate and ex-chloride Pt/Ce0.56Zr0.44O2 catalysts for low temperature water gas shift reaction, J. Catal. 270(2010) 285-298. [35] L. Lan, S.H. Chen, Y. Cao, M. Zhao, M.C. Gong, Y.Q. Chen, Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst, J. Colloid Interface Sci. 450(2015) 404-416. [36] S. Das, R. Gupta, A. Kumar, M. Shah, M. Sengupta, S. Bhandari, A. Bordoloi, Facile synthesis of ruthenium decorated Zr0.5Ce0.5O2 nanorods for catalytic partial oxidation of methane, ACS Appl. Nano. Mater. 1(2018) 2953-2961. [37] L. Zhang, T.J. Chen, S.H. Zeng, H.Q. Su, Effect of doping elements on oxygen vacancies and lattice oxygen in CeO2-CuO catalysts, J. Environ. Chem. Eng. 4(2016) 2785-2794. [38] Y. Hu, X.J. Yang, S. Cao, J. Zhou, Y.X. Wu, J. Han, Z.G. Yan, M.M. Zheng, Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst, Appl. Surf. Sci. 400(2017) 148-153. [39] K. Persson, K. Jansson, S.G. Järås, Characterisation and microstructure of Pd and bimetallic Pd-Pt catalysts during methane oxidation, J. Catal. 245(2007) 401-414. [40] T. Nakatsuji, M. Kunishige, J.Y. Li, M. Hashimoto, Y. Matsuzono, Effect of CeO2 addition into Pd/Zr-Pr mixed oxide on three-way catalysis and thermal durability, Catal. Commun. 35(2013) 88-94. |