[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358) (1972) 37-38. [2] L. Lin, H. Ou, Y. Zhang, X. Wang, Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis, ACS Catal. 6(6) (2016) 3921-3931. [3] W. Zhou, W. Li, J. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, Ordered mesoporous black tio2 as highly efficient hydrogen evolution photocatalyst, J. Am. Chem. Soc. 136(26) (2014) 9280-9283. [4] G. Siddiqi, V. Mougel, C. Coperet, Highly active subnanometer Au particles supported on TiO2 for photocatalytic hydrogen evolution from a well-defined organogold precursor[Au5(mesityl)5], Inorg. Chem. 55(8) (2016) 4026-4033. [5] J.A. Anta, E. Guillen, R. Tena-Zaera, ZnO-based dye-sensitized solar cells, J. Phys. Chem. C 116(21) (2012) 11413-11425. [6] P. Lisowski, J.C. Colmenares, O.M.W. Lisowski, D. Lisovytskiy, A. Kaminska, D. Łomot, Dual functionality of TiO2/biochar hybrid materials:Photocatalytic phenol degradation in the liquid phase and selective oxidation of methanol in the gas phase, ACS Sustainable Chem. Eng. 5(19) (2017) 6274-6287. [7] L.B.B. Ndong, M.P. Ibondou, X. Gu, S. Lu, Z. Qiu, Q. Sui, S.M. Mbadinga, Enhanced photocatalytic activity of TiO2 nanosheets by doping with cu for chlorinated solvent pollutants degradation, Ind. Eng. Chem. Res. 53(4) (2014) 1368-1376. [8] S.B. Rasmussen, R. Portela, S. Sua'rez, Hybrid TiO2-SiMgOX composite for combined chemisorption and photocatalytic elimination of gaseous H2S, Ind. Eng. Chem. Res. 49(15) (2010) 6685-6690. [9] H. Wang, Y. Su, H. Zhao, H. Yu, S. Chen, Y. Zhang, X. Quan, Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic C3N4, Environ. Sci. Technol. 48(20) (2014) 11984-11990. [10] Z. Zheng, B. Huang, X. Meng, J. Wang, S. Wang, Z. Lou, Z. Wang, X. Qin, X. Zhang, Y. Dai, Metallic zinc-assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity, Chem. Commun. 49(9) (2013) 868-870. [11] S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Green approach for photocatalytic Cu(II)-EDTA degradation over TiO2:Toward environmental sustainability, Environ. Sci. Technol. 49(4) (2015) 2541-2548. [12] M. Brauer, M. Amann, R.T. Burnett, A. Cohen, F. Dentener, M. Ezzati, S.B. Henderson, M. Krzyzanowski, R.V. Martin, R.V. Dingenen, A.V. Donkelaar, G.D. Thurston, Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution, Environ. Sci. Technol. 46(2) (2012) 652-660. [13] M. Brauer, G. Freedman, J. Frostad, D.A. Van, R.V. Martin, F. Dentener, D.R. Van, K. Estep, H. Amini, J.S. Apte, Ambient air pollution exposure estimation for the global burden of disease 2013, Environ. Sci. Technol. 50(1) (2015) 79-88. [14] J. J. West, A. Cohen, F. Dentener, B. Brunekreef, T. Zhu, B. Armstrong, M. L. Bell, M. Brauer, G. Carmichael, D. L. Costa, D. W. Dockery, M. Kleeman, M. Krzyzanowski, N. Künzli, C. Liousse, S. C. C. Lung, R. V. Martin, U. Pöschl, C. A. Pope, J.M. Roberts, A. G. Russell, C. Wiedinmyer, What we breathe impacts our health:Improving understanding of the link between air pollution and health, Environ. Sci. Technol., 50(10) (2016), 50, 4895-904. [15] F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, Z. Wu, An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification, Environ. Sci. Technol. 49(20) (2015) 12432-12440. [16] Y. Bai, P. Yang, P. Wang, Z. Fan, H. Xie, P.K. Wong, L. Ye, J. Solid phase fabrication of bismuth-rich Bi3O4ClxBr1-x solid solution for enhanced photocatalytic NO removal under visible light, Taiwan Inst. Chem. E. 82(2018) 273-280. [17] E.L. Lito, A.M.L. Cruz, Enhanced photocatalytic activity of TiO2 rutile by coupling with fly ashes for the removal of NO gases, Ind. Eng. Chem. Res. 55(44) (2016) 11512-11519. [18] W. Zhu, S. Xiao, D. Zhang, P. Liu, H. Zhou, W. Dai, F. Liu, H. Li, Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement:potential application in flue gas treatment, Langmuir 31(39) (2015) 10822-10830. [19] J. Ma, H. Wu, Y. Liu, H. He, Photocatalytic removal of NOx over visible light responsive oxygen-deficient TiO2, J. Phys. Chem. C 118(14) (2014) 7434-7441. [20] Y. Liu, S. Yu, Z. Zhao, F. Dong, X.A. Dong, Y. Zhou, N-doped Bi2O2CO3/graphene quantum dot composite photocatalyst:Enhanced visible-light photocatalytic NO oxidation and in situ DRIFTS studies, J. Phys. Chem. C 121(22) (2017) 12168-12177. [21] W. Zhang, Z. Zhao, F. Dong, Y. Zhang, Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal, Chin. J. Catal. 38(2017) 372-378. [22] Z. Ai, L. Zhu, S. Lee, L. Zhang, NO treated TiO2 as an efficient visible light photocatalyst for NO removal, J. Hazard. Mater. 192(1) (2011) 361-367. [23] E. Gmbh, Weather-resistant pearlescent pigments, process for the production and use thereof, Journal of Museum Education 31(2017) 41-49. [24] G. Fu, Methods and Compositions Related to Pearlescent Pigments:EP, US6056815[P], 2000. [25] J. Chen, Y. Zhao, Improving the performances of mica-titanium pearlescent pigment by surface modification, China Paint (1) (2004) 39-41. [26] D.Q. Han, S.W. Zhong, Prospects of TiO2 encapsulated mica-based pearlescent pigments, paint & coatings industry, 33(7) (2003) 31-34. [27] P.M.T. Cavalcante, M. Dondi, G. Guarini, F.M. Barros, A.B.D. Luz, Ceramic application of mica titania pearlescent pigments, Dyes &Pigments 74(1) (2007) 1-8. [28] J. Chen, X.H. Shi, The preparation and characteristics of cobalt blue colored mica titania pearlescent pigment by microemulsions, Dyes & Pigments 75(3) (2007) 766-769. [29] M.R. Tohidifar, E. Taheri-Nassaj, P. Alizadeh, Precursor content assessment and its influence on the optical interference of a nano-sized mica-hematite pearlescent pigment, Powder Technology 204(2) (2010) 194-197. [30] S. W. Zhong, Q. Zhang, D. Q. Han, J. Z. Kuang, Preparation of color pearlescent pigment using rare-earth oxide and titanium oxide to coat mica, Key Engineering Materials, 280-283(2007)903-906. |