[1] D. Bonvin, Optimal operation of batch reactors:A personal view, J. Process Control 8(5-6) (1998) 355-368.[2] Z.H. Xiong, J. Zhang, X. Wang, Y.M. Xu, Integrated tracking control strategy for batch processes using a batch-wise linear time-varying perturbation model, Control Theory Appl. 1(1) (2007) 178-188.[3] N. Lu, F. Gao, Stage-based process analysis and quality prediction for batch processes, Ind. Eng. Chem. Res. 44(10) (2005) 3547-3555.[4] J.H. Lee, K.S. Lee, Iterative learning control applied to batch processes:An overview, Control. Eng. Pract. 15(10) (2007) 1306-1318.[5] S. Arimoto, S. Kawamura, F. Miyazaki, Bettering operation of robots by learning, J. Robot. Syst. 1(2) (1984) 123-140.[6] K.S. Lee, I.S. Chin, H.J. Lee, J.H. Lee, Model predictive control technique combined with iterative learning for batch processes, AICHE J. 45(10) (1999) 2175-2187.[7] C.J. Chien, J.S. Liu, P2type iterative learning controller for robust output tracking of nonlinear time-varying systems, Int. J. Control. 3(2) (1996) 319-334.[8] Z. Xiong, J. Zhang, A batch-to-batch iterative optimal control strategy based on recurrent neural network models, J. Process Control 15(1) (2005) 11-21.[9] J. Camacho, D. Lauri, B. Lennox, M. Escabias, M. Valderrama, Evaluation of smoothing techniques in the run to run optimization of fed-batch processes with u-PLS, J. Chemom. 29(6) (2015) 338-348.[10] E. Rogers, D.H. Owens, Stability Analysis for Linear Repetitive Processes, Springer, Berlin Heidelberg, 1992.[11] I. Chin, S.J. Qin, K.S. Lee, M. Cho, A two-stage iterative learning control technique combined with real-time feedback for independent disturbance rejection, Automatica 40(11) (2004) 1913-1922.[12] K.S. Lee, J.H. Lee, Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables, J. Process Control 13(7) (2003) 607-621.[13] J. Shi, F. Gao, T.J. Wu, From two-dimensional linear quadratic optimal control to iterative learning control paper 1. Two-dimensional linear quadratic optimal controls and system analysis, Ind. Eng. Chem. Res. 45(13) (2006) 4603-4616.[14] J. Shi, F. Gao, T.J. Wu, From two-dimensional linear quadratic optimal control to iterative learning control paper 2. Iterative learning controls for batch processes, Ind. Eng. Chem. Res. 45(13) (2006) 4617-4628.[15] C. Duran-Villalobos, Iterative learning modelling and control of batch fermentation processes, Dyn. Control Process Syst. 10(1) (2013) 511-516.[16] J. Chen, Y.H. Lin, Multibatch model predictive control for repetitive batch operation with input-output linearization, Ind. Eng. Chem. Res. 51(28) (2012) 9598-9608.[17] N.Y. Lu, F. Zhao, J.H. Lu, R.Y. Qi, Quality control of batch process using natural gradient based model-free optimization, IFAC Proc. Vol. 47(3) (2014) 8335-8340.[18] G.C. Ybenko, Just-in-time learning and estimation, in:S. Bittanti, G. Picci (Eds.), Identification, Adaptation, Learning:The Science of Learning Models from Data, Springer, 1996.[19] C.G. Atheson, A.W. Moore, S. Schaal, Locally weighted learning, Artif. Intell. Rev. 11(1997) 11-73.[20] C. Cheng, Min-Sen Chiu, A new data-based methodology for nonlinear process modeling, Chem. Eng. Sci. 59(13) (2004) 2801-2810.[21] Y. Liu, Z. Gao, P. Li, H. Wang, Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes, Ind. Eng. Chem. Res. 51(11) (2012) 4313-4327.[22] C. Cheng, Y. Hashimoto, M.S. Chiu, Adaptive controller design using just-in-time learning algorithm, IEEE Int. Conf. Control Appl. 2(2004) 1106-1111.[23] E. Ziegel, Classical and Modem Regression with Applications, Technometrics 33(2) (1991) 248.[24] M. Fukushima, A successive quadratic programming algorithm with global and superlinear convergence properties, Math. Program. 35(3) (1986) 253-264.[25] L. Jia, D.S. Cheng, Particle swarm optimization algorithm based iterative learning algorithm for batch processes, Control Eng. China 18(3) (2011) 341-344.[26] J.H. Mou, S.M. Su, A hybrid genetic algorithm for constrained optimization, Comput. Simul. 26(8) (2009) 184-187.[27] L. Jia, J.P. Shi, M.S. Chiu, Integrated neuro-fuzzy model and dynamic r-parameter based quadratic criterion-iterative learning control for batch process control technique, Neurocomputing 98(18) (2012) 24-33.[28] Z.H. Xiong, J. Zhang, Product quality trajectory tracking in batch processes using iterative learning control based on time-varying perturbation models, Ind. Eng. Chem. Res. 42(26) (2003) 6802-6814. |