[1] B.W. Bequette, Non-linear model predictive control:A personal retrospective, Can. J. Chem. Eng. 85(4) (2007) 408-415. [2] S.J. Qin, T.A. Badgwell, A survey of industrial model predictive control technology, Control. Eng. Pract. 11(7) (2003) 733-764. [3] T.A. Badgwell, K.R. Muske, Disturbance model design for linear model predictive control, Proceedings of the American Control Conference, Anchorage, 2002, pp. 1621-1625. [4] U. Maeder, Borrelli, M. Morari, Linear offset-free model predictive control, Automatica 45(10) (2009) 2214-2222. [5] M. Morari, U. Maeder, Nonlinear offset-free model predictive control, Automatica 48(9) (2012) 2059-2067. [6] K.R. Muske, T.A. Badgwell, Disturbance modeling for offset-free linear model predictive control, J. Process Control 12(5) (2002) 617-632. [7] G. Pannocchia, A. Bemporad, Combined design of disturbance model and observer for offset-free model predictive control, IEEE Trans. Autom. Control 52(6) (2007) 1048-1053. [8] G. Pannocchia, E.C. Kerrigan, Offset-free receding horizon control of constrained linear systems, AIChE J. 51(12) (2005) 3134-3146. [9] G. Pannocchia, J.B. Rawlings, Disturbance models for offset-free model predictive control, AIChE J. 49(2) (2003) 426-437. [10] M.R. Rajamani, J.B. Rawlings, Estimation of the disturbance structure from data using semidefinite programming and optimal weighting, Automatica 45(1) (2009) 142-148. [11] B.J. Odelson, M.R. Rajamani, J.B. Rawlings, A new autocovariance least-squares method for estimating noise covariances, Automatica 42(2) (2006) 303-308. [12] M.R. Rajamani, J.B. Rawlings, S.J. Qin, Achieving state estimation equivalence for misassigned disturbances in offset-free model predictive control, AIChE J. 55(2) (2009) 396-407. [13] F.G. Shinskey, Feedback Controllers for the Process Industries, McGraw-Hill Professional, 1994. [14] K.R. Muske, J.B. Rawlings, Model predictive control with linear models, AIChE J. 39(2) (1993) 262-287. [15] S. Gillijns, B. De Moor, Unbiased minimum-variance input and state estimation for linear discrete-time systems, Automatica 43(1) (2007) 111-116. [16] S. Gillijns, B. De Moor, Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough, Automatica 43(5) (2007) 934-937. [17] P.K. Kitanidis, Unbiased minimum-variance linear state estimation, Automatica 23(6) (1987) 775-778. [18] T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation, Prentice-Hall, Upper Saddle River, NJ, 2000. [19] Z. Xu, Y. Zhu, K. Han, J. Zhao, J. Qian, A multi-iteration pseudo linear regression method and an adaptive disturbance model for MPC, J. Process Control 20(4) (2010) 384-395. [20] M. Darouach, M. Zasadzinski, Unbiased minimum variance estimation for systems with unknown exogenous inputs, Automatica 33(4) (1997) 717-719. [21] H.Z. Fang, R.A. de Callafon, On the asymptotic stability of minimum-variance unbiased input and state estimation, Automatica 48(12) (2012) 3183-3186. [22] W. Kerwin, J. Prince, On the optimality of recursive unbiased state estimation with unknown inputs, Automatica 36(9) (2000) 1381-1383. [23] Y. Cheng, H. Ye, Y. Wang, D. Zhou, Unbiased minimum-variance state estimation for linear systems with unknown input, Automatica 45(2) (2009) 485-491. [24] H. Wang, J. Zhao, Z. Xu, Z. Shao, Input and state estimation for linear systems with a rank-deficient direct feedthrough matrix, ISA Trans. 57(2015) 57-62. [25] H. Wang, J. Zhao, Z. Xu, Z. Shao, Model predictive control for Hammerstein systems with unknown input nonlinearities, Ind. Eng. Chem. Res. 53(18) (2014) 7714-7722. [26] S. Skogestad, Dynamics and control of distillation columns:A tutorial introduction, Chem. Eng. Res. Des. 75(6) (1997) 539-562. [27] P. Lundström, J.H. Lee, M. Morari, S. Skogestad, Limitations of dynamic matrix control, Comput. Chem. Eng. 19(4) (1995) 409-421. |