[1] Z. Jegla, P. Stehlík, J. Kohoutek, Plant energy saving through efficient retrofit of furnaces, Appl. Therm. Eng. 20 (15-16) (2000) 1545-1560. [2] S.A. Kalogirou, Artificial intelligence for the modeling and control of combustion processes: a review, Prog. Energy Combust. Sci. 29 (6) (2003) 515-566. [3] M. Ramírez, Fuzzy control of a multiple hearth furnace, Comput. Ind. 54 (1) (2004) 105-113. [4] C. Lee, C.G. Jou, Saving fuel consumption and reducing pollution emissions for industrial furnace, Fuel Process. Technol. 92 (12) (2011) 2335-2340. [5] C. Lee, C.G. Jou, Improving furnace and boiler cost-effectiveness and CO2 emission by adjusting excess air, Environ. Prog. Sustain. Energy 31 (1) (2012) 157-162. [6] Wenxiang Lu, Xiaoyong Gao, Dexian Huang, Research on intelligent optimal control of thermal efficiency of furnace, Chin. J. Sci. Instrum. 35 (8) (2009) 2335-2340. [7] A.Willersrud, Short-termproduction optimization of offshore oil and gas production using nonlinear model predictive control, J. Process Control 23 (2) (2013) 215-223. [8] D.Q. Mayne, Constrained model predictive control: stability and optimality, Automatica 36 (6) (2000) 789-814. [9] S.J. Qin, T. Badgwell, in: F. Allgöwer, A. Zheng, F. Allgöwer, A. Zheng (Eds.), An Overview of Nonlinear Model Predictive Control Applications, Birkhäuser, Basel, 2000, pp. 369-392. [10] Y.Wang, D. Huang, Y. Jin, A hybrid model predictive control for handling infeasibility and constraint prioritization, Chin. J. Chem. Eng. (02) (2005) 65-71. [11] R. Scattolini, Architectures for distributed and hierarchicalmodel predictive control — a review, J. Process Control 19 (5) (2009) 723-731. [12] P.D. Christofides, Distributed model predictive control: a tutorial review and future research directions, Comput. Chem. Eng. 51 (2013) 21-41. [13] X. Chen, Distributed economic MPC: application to a nonlinear chemical process network, J. Process Control 22 (4) (2012) 689-699. [14] L. Würth, R. Hannemann, W. Marquardt, A two-layer architecture for economically optimal process control and operation, J. Process Control 21 (3) (2011) 311-321. [15] V. Adetola,M. Guay, Integration of real-time optimization and model predictive control, J. Process Control 20 (2) (2010) 125-133. [16] M. Heidarinejad, J. Liu, P.D. Christofides, Economic model predictive control of nonlinear process systems using Lyapunov techniques, AIChE J. 58 (3) (2012) 855-870. [17] M. Ellisa, P.D. Christofides, Integrating dynamic economic optimization and model predictive control for optimal operation of nonlinear process systems, Control. Eng. Pract. 22 (10) (2013). [18] Wenxiang Lu, Ying Zhu, Dexian Huang, Yihui Jin, A new strategy of integrated control and on-line optimization on high-purity distillation process, Chin. J. Chem. Eng. 18 (1) (2010) 66-79. [19] A. Gopalakrishnan, L.T. Biegler, Economic nonlinear model predictive control for periodic optimal operation of gas pipeline networks, Comput. Chem. Eng. 52 (2013) 90-99. [20] M.A. Müller, D. Angeli, F. Allgöwer, Economic model predictive control with selftuning terminal cost, Eur. J. Control. 19 (5) (2013). [21] R. Huang, E. Harinath, L.T. Biegler, Lyapunov stability of economically oriented NMPC for cyclic processes, J. Process Control 21 (4) (2011) 501-509. [22] Bo Li, Xuefang Lin-Shi, B. Allard, J.-M. Retif, A digital dual-state-variable predictive controller for high switching frequency buck converter with improved Σ-Δ DPWM, IEEE Trans. Ind. Inform. 8 (3) (Aug. 2012) 472-481. [23] R. Huang, V.M. Zavala, L.T. Biegler, Advanced step nonlinear model predictive control for air separation units, J. Process Control 19 (4) (2009) 678-685 |