[1] G.J. Heynderickx, A.J. Oprins, G.B. Marin, E. Dick, Three-dimensional flow patterns in cracking furnaces with long-flame burners, AIChE J. 47(2001) 388-400. [2] T. Detemmerman, G. Froment, Three dimensional coupled simulation of furnaces and reactor tubes for the thermal cracking of hydrocarbons, Oil Gas Sci. Technol. 53(1998) 181-194. [3] G. Hu, H. Wang, F. Qian, K.M. Van Geem, C.M. Schietekat, G.B. Marin, Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners, Comput. Chem. Eng. 38(2012) 24-34. [4] X. Lan, J. Gao, C. Xu, H. Zhang, Numerical simulation of transfer and reaction processes in ethylene furnaces, Chem. Eng. Res. Des. 85(2007) 1565-1579. [5] A. Niaei, J. Towfighi, S.M. Sadrameli, R. Karimzadeh, The combined simulation of heat transfer and pyrolysis reactions in industrial cracking furnaces, Appl. Therm. Eng. 24(2004) 2251-2265. [6] G.D. Stefanidis, K.M. Van Geem, G.J. Heynderickx, G.B. Marin, Evaluation of highemissivity coatings in steam cracking furnaces using a non-grey gas radiation model, Chem. Eng. J. 137(2008) 411-421. [7] G. Stefanidis, B. Merci, G.J. Heynderickx, G.B. Marin, CFD simulations of steam cracking furnaces using detailed combustion mechanisms, Comput. Chem. Eng. 30(2006) 635-649. [8] A. Habibi, B. Merci, G.J. Heynderickx, Impact of radiation models in CFD simulations of steam cracking furnaces, Comput. Chem. Eng. 31(2007) 1389-1406. [9] H. Guihua, W. Honggang, Q. Feng, Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces, Chem. Eng. Sci. 66(2011) 1600-1611. [10] P.J. Stopford, Recent applications of CFD modelling in the power generation and combustion industries, Appl. Math. Model. 26(2002) 351-374. [11] A. Batu, N. Selcuk, Modeling of radiative heat transfer in the freeboard of a fluidized bed combustor using the zone method of analysis, Turk. J. Eng. Environ. Sci. 26(2001) 49-58. [12] H. Hottel, E. Cohen, Radiant heat exchange in a gas-filled enclosure:allowance for nonuniformity of gas temperature, AIChE J. 4(1958) 3-14. [13] H.B. Becker, A mathematical solution for gas-to-surface radiative exchange area for a rectangular parallelepiped enclosure containing a gray medium, J. Heat Transf.-Trans. ASME 99(1977) 203-207. [14] R.J. Tucker, Direct exchange areas for calculating radiation transfer in rectangular furnaces, J. Heat Transf.-Trans. ASME 108(1986) 707-710. [15] H. Erkku, Radiant Heat Exchange in Gas-filled Slabs and Cylinders, PhD Thesis, Massachusetts Institute of Technology, USA, 1959. [16] H. Ebrahimi, A. Zamaniyan, J.S. Soltan Mohammadzadeh, A.A. Khalili, Zonal modeling of radiative heat transfer in industrial furnaces using simplified model for exchange area calculation, Appl. Math. Model. 37(2013) 8004-8015. [17] M.F. Modest, Radiative Heat Transfer, Academic Press, 2013. [18] W.R. Shu, L.L. Ross, Cracking severity index in pyrolysis of petroleum fractions, Ind. Eng. Chem. Process. Des. Dev. 21(1982) 371-377. [19] P. Kumar, D. Kunzru, Modeling of naphtha pyrolysis, Ind. Eng. Chem. Process. Des. Dev. 24(1985) 774-782. [20] M. Dente, E. Ranzi, A. Goossens, Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO), Comput. Chem. Eng. 3(1979) 61-75. [21] Z. Fang, T. Qiu, B. Chen, Improvement of ethylene cracking reaction network with network flow analysis algorithm, Comput. Chem. Eng. 91(2016) 182-194. [22] W. Zhou, T. Qiu, Zone modeling of radiative heat transfer in industrial furnaces using adjusted Monte-Carlo integral method for direct exchange area calculation, Appl. Therm. Eng. 81(2015) 161-167. [23] H.C. Hottel, A.F. Sarofim, Radiative Transfer, McGraw-Hill, 1967. [24] N. Selçuk, R.G. Siddall, J.M. Beér, A comparison of mathematical models of the radiative behaviour of an industrial heater, Chem. Eng. Sci. 30(1975) 871-876. [25] J.S. Truelove, A Mixed Grey Gas Model for Flame Radiation, Thermodynamics Division, AERE, 1976. [26] T.F. Smith, Z.F. Shen, J.N. Friedman, Evaluation of coefficients for the weighted sum of gray gases model, Trans. ASME J. Heat Transf. 104(1982) 602-608. [27] J.J. Noble, The zone method:explicit matrix relations for total exchange areas, Int. J. Heat Mass Transf. 18(1975) 261-269. [28] S.P. Pyl, Z. Hou, K.M. Van Geem, M.-F. Reyniers, G.B. Marin, M.T. Klein, Modeling the composition of crude oil fractions using constrained homologous series, Ind. Eng. Chem. Res. 50(2011) 10850-10858. [29] M. Dente, G. Bozzano, T. Faravelli, A. Marongiu, S. Pierucci, E. Ranzi, Kinetic modelling of pyrolysis processes in gas and condensed phase, Adv. Chem. Eng. 32(2007) 51-166. [30] E. Ranzi, A. Frassoldati, S. Granata, T. Faravelli, Wide-range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes, Ind. Eng. Chem. Res. 44(2005) 5170-5183. [31] J. Pujol, The solution of nonlinear inverse problems and the Levenberg-Marquardt method, Geophysics 72(2007) W1-W16. |