[1] M.B. Franke, MINLP optimization of a heterogeneous azeotropic distillation process:Separation of ethanol and water with cyclohexane as an entrainer, Comput. Chem. Eng. 89(2016) 204-221. [2] Q.K. Le, I.J. Halvorsen, O. Pajalic, S. Skogestad, Dividing wall columns for heterogeneous azeotropic distillation, Chem. Eng. Res. Des. 99(2015) 111-119. [3] W.S. Li, L. Zhong, Y.C. He, J.H. Meng, F.L. Yao, Y.S. Guo, C.J. Xu, Multiple steadystates analysis and unstable operating point stabilization in homogeneous azeotropic distillation with intermediate entrainer, Ind. Eng. Chem. Res. 54(2015) 7668-7686. [4] Y.L. Wang, S.S. Liang, G.L. Bu, W. Liu, Z. Zhang, Z.Y. Zhu, Effect of solvent flow rates on controllability of extractive distillation for separating binary azeotropic mixture, Ind. Eng. Chem. Res. 54(2015) 12908-12919. [5] Y.L. Wang, P. Cui, Y. Ma, Z. Zhang, Extractive distillation and pressure-swing distillation for THF/ethanol separation, J. Chem. Technol. Biotechnol. 90(2014) 1463-1472. [6] K.Y. Hsu, Y.C. Hsiao, I. Chien, Design and control of dimethyl carbonate-methanol separation via extractive distillation in the dimethyl carbonate reactive-distillation process, Ind. Eng. Chem. Res. 49(2016) 735-749. [7] Y.L. Wang, Z. Zhang, H. Zhang, Q. Zhang, Control of heat integrated pressure-swingdistillation process for separating azeotropic mixture of tetrahydrofuran and methanol, Ind. Eng. Chem. Res. 54(2015) 1646-1655. [8] Z.Y. Zhu, L.L. Wang, Y.X. Ma, W.L. Wang, Y.L. Wang, Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation, Comput. Chem. Eng. 76(2015) 137-149. [9] Y.J. Cao, M. Li, Y. Wang, T.R. Zhao, X. Li, Z.Y. Zhu, Y.L. Wang, Effect of feed temperature on economics and controllability of pressure-swing distillation for separating binary azeotrope, Chem. Eng. Process. 110(2016) 160-171. [10] Y.L. Wang, Z. Zhang, D.F. Xu, W. Liu, Z.Y. Zhu, Design and control of pressure-swing distillation for azeotropes with different types of boiling behavior at different pressures, J. Process Control 42(2016) 59-76. [11] J. Gmehling, R. Bölts, Azeotropic data for binary and ternary systems at moderate pressures, J. Chem. Eng. Data 41(1996) 202-209. [12] N.F. Martínez, E. Lladosa, M. Burguet, J.B. Montón, Isobaric vapour-liquid equilibria for binary systems of 2-butanone with ethanol, 1-propanol, and 2-propanol at 20 and 101.3 kPa, Fluid Phase Equilib. 270(2008) 62-68. [13] S.T. Harding, C.D. Maranas, C.M. McDonald, C.A. Floudas, Locating all homogeneous azeotropes in multicomponent mixtures, Ind. Eng. Chem. Res. 36(1999) 160-178. [14] E. Salomone, J. Espinosa, Prediction of homogeneous azeotropes with interval analysis techniques exploiting topological considerations, Ind. Eng. Chem. Res. 40(2001) 1580-1588. [15] M.P. Breil, G.M. Kontogeorgis, Thermodynamics of triethylene glycol and tetraethylene glycol containing systems described by the cubic-plus-association equation of state, Ind. Eng. Chem. Res. 48(2009) 5472-5480. [16] O. Redlich, J.N.S. Kwong, On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev. 44(1949) 233-244. [17] M. Yazdizadeh, F. Rahmani, A.A. Forghani, Thermodynamic modeling of CO2 solubility in ionic liquid ([Cn-mim] [Tf2N]; n=2, 4, 6, 8) with using Wong-Sandler mixing rule, Peng-Rabinson equation of state (EOS) and differential evolution (DE) method, Korean J. Chem. Eng. 28(2011) 246-251. [18] R. Putnam, R. Taylor, A. Klamt, F. Eckert, M. Schiller, Prediction of infinite dilution activity coefficients using COSMO-RS, Ind. Eng. Chem. Res. 42(2003) 3635-3641. [19] A. Klamt, A. Volker Jonas, Thorsten Bürger, J.C.W. Lohrenz, Refinement and parametrization of COSMO-RS, J. Phys. Chem. A 102(1998) 5074-5085. [20] A. Klamt, F. Eckert, COSMO-RS:a novel and efficient method for the a priori prediction of thermophysical data of liquids, Fluid Phase Equilib. 172(2000) 43-72. [21] S. Zhu, A.H. Elcock, A complete thermodynamic characterization of electrostatic and hydrophobic associations in the temperature range 0 to 100℃ from explicitsolvent molecular dynamics simulations, J. Chem. Theory Comput. 6(4) (2010) 1293-1306. [22] S. Punnathanam, P.A. Monson, Crystal nucleation in binary hard sphere mixtures:A Monte Carlo simulation study, J. Chem. Phys. 125(2) (2006), 024508.. [23] B.B. Wang, H. Yi, K.L. Xu, Q.S. Wang, Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models, J. Therm. Anal. Calorim. (2016) 1-8. [24] L.J. Jia, Z.M. Shen, W.M. Guo, Y.A. Zhang, H.C. Zhu, W.C. Ji, M.H. Fan, QSAR models for oxidative degradation of organic pollutants in the Fenton process, J. Taiwan Inst. Chem. Eng. 46(2015) 140-147. [25] K. Samghani, M. Hosseinfatemi, Developing a support vector machine based QSPR model for prediction of half-life of some herbicides, Ecotoxicol. Environ. Saf. 129(2016) 10-15. [26] D. Abooali, M.A. Sobati, Novel method for prediction of normal boiling point and enthalpy of vaporization at normal boiling point of pure refrigerants:A QSPR approach, Int. J. Refrig. 40(2014) 282-293. [27] G.J. Liang, J. Xu, L. Liu, QSPR analysis for melting point of fatty acids using genetic algorithm based multiple linear regression (GA-MLR), Fluid Phase Equilib. 353(2013) 15-21. [28] S.J. Patel, D. Ng, M.S. Mannan, QSPR flash point prediction of solvents using topological indices for application in computer aided molecular design, Ind. Eng. Chem. Res. 48(2009) 7378-7387. [29] I. Oprisiu, E. Varlamova, E. Muratov, A. Artemenko, G. Marcou, P. Polishchuk, V. Kuz'min, A. Varnek, QSPR approach to predict nonadditive properties of mixtures. Application to bubble point temperatures of binary mixtures of liquids, Mol. Inf. 31(6-7) (2012) 491-502. [30] V.P. Solov'ev, I. Oprisiu, G. Marcou, A. Varnek, Quantitative structure-property relationship (QSPR) modeling of normal boiling point temperature and composition of binary azeotropes, Ind. Eng. Chem. Res. 50(2011) 14162-14167. [31] V. Zare-Shahabadi, M. Lotfizadeh, A.R.A. Gandomani, M.M. Papari, Determination of boiling points of azeotropic mixtures using quantitative structure-property relationship (QSPR) strategy, J. Mol. Liq. 188(2013) 222-229. [32] A.R. Katritzky, I.B. Stoyanova-Slavova, K. Tämm, T. Tamm, M. Karelson, Application of the QSPR approach to the boiling points of azeotropes, J. Phys. Chem. A 115(2011) 3475-3479. [33] A.J. Gordon, R.A. Ford, The Chemist's Companion:A Handbook of Practical Data, Techniques, and References, Wiley, New York, 1972. [34] Azeotrope Databank, http://ecosse.org/chem_eng/azeotrope_bank.html,Accessed date:13 February 2010. [35] D.X. Wang, Y. Yuan, S.Y. Duan, R.N. Liu, S.J. Gu, S.P. Zhao, L. Liu, J. Xu, QSPR study on melting point of carbocyclic nitroaromatic compounds by multiple linear regression and artificial neural network, Chemom. Intell. Lab. Syst. 143(2015) 7-15. [36] D. Rogers, A.J. Hopfinger, Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships, J. Chem. Inf. Comput. Sci. 34(1994) 854-866. [37] Christoph Rücker, A. Gerta Rücker, M. Meringer, y-Randomization and its variants in QSPR/QSAR, J. Chem. Inf. Model. 47(2007) 2345-2357. [38] J. Gmehling, J. Menke, K. Fischer, J. Krafczyk, Azeotropic Data, Second edition VCH, Weinheim, Germany, 2004. |