Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (11): 2219-2228.DOI: 10.1016/j.cjche.2018.07.013
• Special issue of Carbon Capture, Utilisation and Storage • Next Articles
Qi Zheng1,2, Xiaoyin Xu1,2, Gregory J. O. Martin2, Sandra E. Kentish1
Received:
2018-01-31
Revised:
2018-07-17
Online:
2018-12-10
Published:
2018-11-28
Contact:
Sandra E. Kentish
Qi Zheng1,2, Xiaoyin Xu1,2, Gregory J. O. Martin2, Sandra E. Kentish1
通讯作者:
Sandra E. Kentish
Qi Zheng, Xiaoyin Xu, Gregory J. O. Martin, Sandra E. Kentish. Critical review of strategies for CO2 delivery to large-scale microalgae cultures[J]. Chin.J.Chem.Eng., 2018, 26(11): 2219-2228.
Qi Zheng, Xiaoyin Xu, Gregory J. O. Martin, Sandra E. Kentish. Critical review of strategies for CO2 delivery to large-scale microalgae cultures[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2219-2228.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.07.013
[1] BP Statistical Review of World Energy (2017).[2] M.A. Carriquiry, X. Du, G.R. Timilsina, Second generation biofuels:Economics and policies, Energy Policy 39(7) (2011) 4222-4234.[3] G. Dragone, B. Fernandes, A.A. Vicente, et al., Third Generation Biofuels From Microalgae, Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2, 20101355-1366.[4] A. Singh, S.I. Olsen, P.S. Nigam, A viable technology to generate third-generation biofuel, J. Chem. Technol. Biotechnol. 86(11) (2011) 1349-1353.[5] B. Metz, IPCC Special Report on Carbon Dioxide Capture and Storage, IPCC, 2005.[6] C.B. Field, M.J. Behrenfeld, J.T. Randerson, et al., Primary production of the biosphere:Integrating terrestrial and oceanic components, Science 281(5374) (1998) 237-240.[7] A.J. Hunt, E.H.K. Sin, R. Marriott, et al., Generation, capture, and utilization of industrial carbon dioxide, ChemSusChem 3(3) (2010) 306-322.[8] T.J. Lundquist, A Realistic Technology and Engineering Assessment of Algae Biofuel Production, Energy Biosciences Institute, University of California, Berkeley, California, 2010.[9] J. Doucha, F. Straka, K. Livansky, Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, J. Appl. Phycol. 17(5) (2005) 403-412.[10] F. Acien, J.M. Fernandez, J.J. Magan, et al., Production cost of a real microalgae production plant and strategies to reduce it, Biotechnol. Adv. 30(6) (2012) 1344-1353.[11] W. Klinthong, Y.H. Yang, C.H. Huang, et al., A review:Microalgae and their applications in CO2 capture and renewable energy, Aerosol Air Qual. Res. 15(2015) 712-742.[12] M. Giordano, J. Beardall, J.A. Raven, CO2 concentrating mechanisms in algae:Mechanisms, environmental modulation, and evolution, Annu. Rev. Plant Biol. 56(2005) 99-131.[13] J.A. Raven, L.A. Ball, J. Beardall, et al., Algae lacking carbon-concentrating mechanisms, Can. J. Bot. 83(7) (2005) 879-890.[14] B. Colman, I.E. Huertas, S. Bhatti, et al., The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae, Funct. Plant Biol. 29(3) (2002) 261-270.[15] M.A. Borowitzka, N.R. Moheimani, Algae for Biofuels and Energy, Springer, 2013.[16] M.R. Badger, G.D. Price, CO2 concentrating mechanisms in cyanobacteria:Molecular components, their diversity and evolution, J. Exp. Bot. 54(383) (2003) 609-622.[17] Y. Wang, D.J. Stessman, M.H. Spalding, The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2:How Chlamydomonas works against the gradient, Plant J. 82(3) (2015) 429-448.[18] E.D. Allen, D.H.N. Spence, The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters, New Phytol. 87(2) (1981) 269-283.[19] T.G. Williams, B. Colman, Quantification of the contribution of CO2, HCO-, and external carbonic anhydrase to photosynthesis at low dissolved inorganic carbon in Chlorella saccharophila, Plant Physiol. 107(1) (1995) 245-251.[20] T.G. Williams, D.H. Turpin, The role of external carbonic anhydrase in inorganic carbon acquisition by Chlamydomonas reinhardii at alkaline pH, Plant Physiol. 83(1) (1987) 92-96.[21] R. van Hille, M. Fagan, L. Bromfield, et al., A modified pH drift assay for inorganic carbon accumulation and external carbonic anhydrase activity in microalgae, J. Appl. Phycol. 26(1) (2014) 377-385.[22] T.J. Smith-Harding, J. Beardall, J.G. Mitchell, The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri, J. Phycol. 53(6) (2017) 1159-1170.[23] J.A. Raven, J. Beardall, The ins and outs of CO2, J. Exp. Bot. 67(1) (2016) 1-13.[24] T. Williams, B. Colman, The effects of pH and dissolved inorganic carbon on external carbonic anhydrase activity in Chlorella saccharophila, Plant Cell Environ. 19(4) (1996) 485-489.[25] E.B. Young, J. Beardall, Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron, and light availability, Can. J. Bot. 83(7) (2005) 917-928.[26] J.H. Duarte, L.S. Fanka, J.A.V. Costa, Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation, Bioresour. Technol. 214(2016) 159-165.[27] D.H. Tang, W. Han, P. Li, et al., CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels, Bioresour. Technol. 102(3) (2011) 3071-3076.[28] UNIDO, Carbon capture and storage in industrial applications, Technology Synthesis Report, 2010.[29] P. Brinckerhoff, Accelerating the Uptake of CCS:Industrial Use of Captured Carbon Dioxide, Global CCS Institute, 2011.[30] E.S. Rubin, J.E. Davison, H.J. Herzog, The Cost of CO2 Capture and Storage, 2015.[31] L. Jiang, S. Luo, X. Fan, et al., Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2, Appl. Energy 88(10) (2011) 3336-3341.[32] M.K. Lam, K.T. Lee, A.R. Mohamed, Current status and challenges on microalgaebased carbon capture, Int. J. Greenhouse Gas Control 10(2012) 456-469.[33] L. Xu, J. Yuan, Thermodynamic properties calculation of the flue gas based on its composition estimation for coal-fired power plants, Appl. Thermo. Eng. 90(2015) 366-375.[34] S. Van Den Hende, H. Vervaeren, N. Boon, Flue gas compounds and microalgae:(Bio-) chemical interactions leading to biotechnological opportunities, Biotechnol. Adv. 30(6) (2012) 1405-1424.[35] C.-Y. Kao, T.Y. Chen, Y.B. Chang, et al., Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp, Bioresour. Technol. 166(2014) 485-493.[36] J.S. Lee, D.K. Kim, J.P. Lee, et al., Effects of SO2 and NO on growth of Chlorella sp. KR-1, Bioresour. Technol. 82(1) (2002) 1-4.[37] H. Nagase, K.I. Yoshihara, K. Eguchi, et al., Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae, Biochem. Eng. J. 7(3) (2001) 241-246.[38] A. Toledo-Cervantes, T. Morales, A. Gonzalez, et al., Long-term photosynthetic CO2 removal from biogas and flue-gas:Exploring the potential of closed photobioreactors for high-value biomass production, Sci. Total Environ. 640-641(2018) 1272-1278.[39] P. Varshney, J. Beardall, S. Bhattacharya, et al., Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide, Algal Res. 30(2018) 28-37.[40] R. Garcia-Cubero, J. Moreno-Fernandez, M. Garcia-Gonzalez, Potential of Chlorella vulgaris to abate flue gas, Waste Biomass Valoriz. (2017) 1-5.[41] D. Hess, K. Napan, B.T. McNeil, et al., Quantification of effects of flue gas derived inorganic contaminants on microalgae growth system and end fate of contaminants, Algal Res. 25(2017) 68-75.[42] M.K. Ji, H.S. Yun, J.H. Hwang, et al., Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production, Environ. Technol. 38(16) (2017) 2085-2092.[43] A.K. Vuppaladadiyam, J.G. Gao, N. Florin, et al., Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization, ChemSusChem 11(2) (2018) 334-355.[44] E.C. Camargo, A.T. Lombardi, Effect of cement industry flue gas simulation on the physiology and photosynthetic performance of Chlorella sorokiniana, J. Appl. Phycol. 30(2) (2018) 861-871.[45] X.K. Li, J.L. Xu, Y. Guo, et al., Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT, Bioresour. Technol. 190(2015) 339-344.[46] X. Yang, W. Xiang, F. Zhang, et al., Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas, Sheng Wu Gong Cheng Xue Bao 29(3) (2013) 370-381.[47] T. Li, G. Xu, J. Rong, et al., The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases, J. Plant Physiol. 195(2016) 73-79.[48] Y. Guo, Z. Yuan, J. Xu, et al., Metabolic acclimation mechanism in microalgae developed for CO2 capture from industrial flue gas, Algal Res. 26(2017) 225-233.[49] E.M. Radmann, F.V. Camerini, T.D. Santos, et al., Isolation and application of SOx and NOx resistant microalgae in biofixation of CO2 from thermoelectricity plants, Energy Convers. Manag. 52(10) (2011) 3132-3136.[50] J.C. Quinn, K.B. Catton, S. Johnson, et al., Geographical assessment of microalgae biofuels potential incorporating resource availability, BioEnergy Res. 6(2) (2013) 591-600.[51] A.L. Stephenson, E. Kazamia, J.S. Dennis, et al., Life-cycle assessment of potential algal biodiesel production in the United Kingdom:A comparison of raceways and air-lift tubular bioreactors, Energy Fuel 24(7) (2010) 4062-4077.[52] K.L. Kadam, Power plant flue gas as a source of CO2 for microalgae cultivation:Economic impact of different process options, Energy Convers. Manag. 38(1997) S505-S510.[53] Z. Chi, J.V. O'Fallon, S. Chen, Bicarbonate produced from carbon capture for algae culture, Trends Biotechnol. 29(11) (2011) 537-541.[54] Z. Chi, Y. Xie, F. Elloy, et al., Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium, Bioresour. Technol. 133(2013) 513-521.[55] I. Pancha, K. Chokshi, T. Ghosh, et al., Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077, Bioresour. Technol. 193(2015) 315-323.[56] M. Nunez, A. Quigg, Changes in growth and composition of the marine microalgae Phaeodactylum tricornutum and Nannochloropsis salina in response to changing sodium bicarbonate concentrations, J. Appl. Phycol. 28(4) (2016) 2123-2138.[57] M. Nayak, W.I. Suh, B. Lee, et al., Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide, Energy Convers. Manag. 156(2018) 45-52.[58] D. White, A. Pagarette, P. Rooks, et al., The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures, J. Appl. Phycol. 25(1) (2013) 153-165.[59] Z. Chi, F. Elloy, Y. Xie, et al., Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system, Appl. Biochem. Biotechnol. (2013) 1-11.[60] G.A. Zavarzin, T.N. Zhilina, V.V. Kevbrin, The alkaliphilic microbial community and its functional diversity, Microbiology 68(5) (1999) 503-521.[61] A.M. Santos, P.P. Lamers, M. Janssen, et al., Biomass and lipid productivity of Neochloris oleoabundans under alkaline-saline conditions, Algal Res. 2(3) (2013) 204-211.[62] K.A. Canon-Rubio, C.E. Sharp, J. Bergerson, et al., Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology, Appl. Microbiol. Biotechnol. 100(4) (2016) 1611-1622.[63] A.M. Santos, M. Jansson, P.P. Lamers, et al., Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions, Bioresour. Technol. 104(2012) 593-599.[64] A. Vadlamani, S. Viamajala, B. Pendyala, et al., Cultivation of microalgae at extreme alkaline pH conditions:A novel approach for biofuel production, ACS Sustain. Chem. Eng. 5(8) (2017) 7284-7294.[65] C.E. Sharp, Robust, high-productivity phototrophic carbon capture at high pH and alkalinity using natural microbial communities, Biotechnol. Biofuels 10(1) (2017) 84.[66] J.D. Noel, W.J. Koros, B.A. McCool, et al., Membrane-mediated delivery of carbon dioxide for consumption by photoautotrophs:Eliminating thermal regeneration in carbon capture, Ind. Eng. Chem. Res. 51(12) (2012) 4673-4681.[67] Q. Zheng, G.J. Martin, S.E. Kentish, Energy efficient transfer of carbon dioxide from flue gases to microalgal systems, Energy Environ. Sci. 9(3) (2016) 1074-1082.[68] Q. Zheng, G.J.O. Martin, Y. Wu, et al., The use of monoethanolamine and potassium glycinate solvents for CO2 delivery to microalgae through a polymeric membrane system, under review, Biochem. Eng. J. 128(2017) 126-133.[69] K.A. Mumford, Y. Wu, K.H. Smith, et al., Review of solvent based carbon-dioxide capture technologies, Front. Chem. Sci. Eng. 9(2) (2015) 125-141.[70] R.C. Pate, Resource requirements for the large-scale production of algal biofuels, Biofuels 4(4) (2013) 409-435.[71] E.R. Venteris, R.L. Skaggs, M.S. Wigmosta, et al., A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction, Biomass Bioenergy 64(0) (2014) 276-290.[72] G. Xu, F. Liang, Y. Yang, et al., An improved CO2 separation and purification system based on cryogenic separation and distillation theory, Energies 7(5) (2014) 3484-3502.[73] L. Rodolfi, G.C. Zittelli, N. Bassi, et al., Microalgae for oil:Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng. 102(1) (2009) 100-112.[74] C.-Y. Chen, K.l. Yeh, R. Aisyah, et al., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production:A critical review, Bioresour. Technol. 102(1) (2011) 71-81.[75] C. Ugwu, H. Aoyagi, H. Uchiyama, Photobioreactors for mass cultivation of algae, Bioresour. Technol. 99(10) (2008) 4021-4028.[76] M. Anjos, B.D. Fernandez, A.A. Vicente, et al., Optimization of CO2 bio-mitigation by Chlorella vulgaris, Bioresour. Technol. 139(2013) 149-154.[77] C.L. Chiang, C.M. Lee, P.C. Chen, Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes, Bioresour. Technol. 102(9) (2011) 5400-5405.[78] W.B. Zimmerman, V. Tesar, H.C.H. Bandulasena, Towards energy efficient nanobubble generation with fluidic oscillation, Curr. Opin. Colloid Interface Sci. 16(4) (2011) 350-356.[79] R. Singh, S. Sharma, Development of suitable photobioreactor for algae production-A review, Renew. Sust. Energ. Rev. 16(4) (2012) 2347-2353.[80] J. Cheng, Z. Yang, Y. Huang, et al., Improving growth rate of microalgae in a 1191 m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant, Bioresour. Technol. 190(2015) 235-241.[81] O. Jorquera, A. Kiperstok, E.A. Sales, et al., Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors, Bioresour. Technol. 101(4) (2010) 1406-1413.[82] X. Ma, S. Yu, Q. Xu, et al., Biosurfactants for microbubble preparation and application, Int. J. Mol. Sci. 12(1) (2011) 462.[83] M. Takahashi, K. Chiba, P. Li, Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus, J. Phys. Chem. B 111(6) (2007) 1343-1347.[84] A. Agarwal, W.J. Ng, Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere 84(9) (2011) 1175-1180.[85] K. Terasaka, A. Hirabayashi, T. Nishino, et al., Development of microbubble aerator for waste water treatment using aerobic activated sludge, Chem. Eng. Sci. 66(14) (2011) 3172-3179.[86] W.B. Zimmerman, B.N. Hewakandamby, V. Tesar, et al., On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation, Food Bioprod. Process. 87(C3) (2009) 215-227.[87] M.K.H. Al-Mashhadani, H.C.H. Bandulasena, W.B. Zimmerman, CO2 mass transfer induced through an airlift loop by a microbubble cloud generated by fluidic oscillation, Ind. Eng. Chem. Res. 51(4) (2012) 1864-1877.[88] J. Tramper, J.B. Williams, D. Joustra, et al., Shear sensitivity of insect cells in suspension, Enzym. Microb. Technol. 8(1) (1986) 33-36.[89] L.H. Fan, Y.T. Zhang, L. Zhang, et al., Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris, J. Membr. Sci. 325(1) (2008) 336-345.[90] V. Mortezaeikia, R. Yegani, O. Tavakoli, Membrane-sparger vs. membrane contactor as a photobioreactors for carbon dioxide biofixation of Synechococcus elongatus in batch and semi-continuous mode, J. CO2 Util. 16(2016) 23-31.[91] L.H. Fan, Y. Zhang, L. Cheng, et al., Optimization of carbon dioxide fixation by Chlorelia vulgaris cultivated in a membrane-photobioreactor, Chem. Eng. Technol. 30(8) (2007) 1094-1099.[92] L.H. Cheng, L. Zhang, H. Chen, et al., Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor, Sep. Purif. Technol. 50(3) (2006) 324-329.[93] H.W. Kim, A.K. Marcus, J.H. Shin, et al., Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR), Environ. Sci. Technol. 45(11) (2011) 5032-5038.[94] A. Kumar, X. Yuan, A.K. Sahu, et al., A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment:A process engineering approach, J. Chem. Technol. Biotechnol. 85(3) (2010) 387-394.[95] H.-W. Kim, J. Cheng, B.E. Rittmann, Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal, Bioresour. Technol. 204(2016) 32-37. |
[1] | Nouman Ahmad, Jianqiang Deng, Muhammad Adnan. Numerical investigation for the suitable choice of bubble diameter correlation for EMMS/bubbling drag model [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 254-270. |
[2] | Vladimir S. Derevschikov, Janna V. Veselovskaya, Anton S. Shalygin, Dmitry A. Yatsenko, Andrey Z. Sheshkovas, Oleg N. Martyanov. Operating limits and features of direct air capture on K2CO3/ZrO2 composite sorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 11-20. |
[3] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[4] | Yaran Yin, Xianming Zhang, Chunying Zhu, Taotao Fu, Youguang Ma. Formation characteristics of Taylor bubbles in a T-junction microchannel with chemical absorption [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 214-222. |
[5] | Wenjuan Bai, Dianming Chu, Kuanxin Tang, Lei Geng, Yan Li, Yan He. The motion mechanism and characteristic of bubble in a pseudo-2D tapered fluidized bed [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 255-270. |
[6] | Zhen Chen, Chunying Zhu, Taotao Fu, Xiqun Gao, Youguang Ma. Formation dynamics and size prediction of bubbles for slurry system in T-shape microchannel [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 153-161. |
[7] | Shenglin Yan, Yan Zhang, Chong Peng, Xiaoyong Yang, Yuan Huang, Zhishan Bai, Xiao Xu. Oil droplet movement and micro-flow characteristics during interaction process between gas bubble and oil droplet in flotation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 229-237. |
[8] | Tao Sun, Mingjun Pang, Yang Fei. Numerical study on hydrodynamic characteristics of spherical bubble contaminated by surfactants under higher Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 268-283. |
[9] | He Yang, Aqiang Chen, Shujun Geng, Jingcai Cheng, Fei Gao, Qingshan Huang, Chao Yang. Influences of fluid physical properties, solid particles, and operating conditions on the hydrodynamics in slurry reactors [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 51-71. |
[10] | Teng Wang, Zihong Xia, Caixia Chen. Computational study of bubble coalescence/break-up behaviors and bubble size distribution in a 3-D pressurized bubbling gas-solid fluidized bed of Geldart A particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 485-496. |
[11] | Heping Xie, Yunpeng Wang, Tao Liu, Yifan Wu, Wenchuan Jiang, Cheng Lan, Zhiyu Zhao, Liangyu Zhu, Dongsheng Yang. Electrochemical CO2 mineralization for red mud treatment driven by hydrogen-cycled membrane electrolysis [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 14-23. |
[12] | Youwei Yang, Jingyu Zhang, Yueqi Gao, Busha Assaba Fayisa, Antai Li, Shouying Huang, Jing Lv, Yue Wang, Xinbin Ma. Highly dispersed nickel boosts catalysis by Cu/SiO2 in the hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 77-85. |
[13] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[14] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[15] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||