[1] R.W. Baker, B.T. Low, Gas separation membrane materials:A perspective, Macromolecules 47(2014) 6999-7013.[2] Z. Tong, W.S.W. Ho, Facilitated transport membranes for CO2 separation and capture, Sep. Sci. Technol. 52(2017) 156-167.[3] E. Favre, Carbon dioxide recovery from post-combustion processes:Can gas permeation membranes compete with absorption? J. Membr. Sci. 294(2007) 50-59.[4] R.W. Baker, K. Lokhandwala, Natural gas processing with membranes:An overview, Ind. Eng. Chem. Res. 47(2008) 2109-2121.[5] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62(1991) 165-185.[6] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(2008) 390-400.[7] S. Weller, W.A. Steiner, Separation of gases by fractional permeation through membranes, J. Appl. Phys. 21(1950) 279-283.[8] S. Weller, W.A. Steiner, Engineering aspects of separation of gases. Fractional permeation through membranes, Chem. Eng. Prog. (1950) 46.[9] C.Y. Pan, Gas separation by permeators with high-flux asymmetric membranes, AIChE J. 29(1983) 545-552.[10] Y. Shindo, T. Hakuta, H. Yoshitome, H. Inoue, Calculation methods for multicomponent gas separation by permeation, Sep. Sci. Technol. 20(1985) 445-459.[11] D.T. Coker, B.D. Freeman, G.K. Fleming, Modeling multicomponent gas separation using hollow-fiber membrane contactors, AIChE J. 44(1998) 1289-1302.[12] A. Alshehri, R. Khalilpour, A. Abbas, Z. Lai, Membrane systems engineering for postcombustion carbon capture, in:T. Dixon, K. Yamaji (Eds.),Ghgt-112013, pp. 976-985.[13] D.X. Yang, Z. Wang, J.X. Wang, S.C. Wang, Parametric study of the membrane process for carbon dioxide removal from natural gas, Ind. Eng. Chem. Res. 48(2009) 9013-9022.[14] M. Scholz, T. Harlacher, T. Melin, M. Wessling, Modeling gas permeation by linking nonideal effects, Ind. Eng. Chem. Res. 52(2013) 1079-1088.[15] R. Khalilpour, K. Mumford, H.B. Zhai, A. Abbas, G. Stevens, E.S. Rubin, Membranebased carbon capture from flue gas:A review, J. Clean. Prod. 103(2015) 286-300.[16] J. Franz, S. Schiebahn, L. Zhao, E. Riensche, V. Scherer, D. Stolten, Investigating the influence of sweep gas on CO2/N2 membranes for post-combustion capture, Int. J. Greenh. Gas Control 13(2013) 180-190.[17] P. Gabrielli, M. Gazzani, M. Mazzotti, On the optimal design of membrane-based gas separation processes, J. Membr. Sci. 526(2017) 118-130.[18] X. He, A. Lindbrathen, T.-J. Kim, M.-B. Hagg, Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas, Int. J. Greenh. Gas Control 64(2017) 323-332.[19] Y. Huang, T.C. Merkel, R.W. Baker, Pressure ratio and its impact on membrane gas separation processes, J. Membr. Sci. 463(2014) 33-40.[20] R. Khalilpour, A. Abbas, Z. Lai, I. Pinnau, Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas, AIChE J. 58(2012) 1550-1561.[21] T.C. Merkel, H.Q. Lin, X.T. Wei, R. Baker, Power plant post-combustion carbon dioxide capture:An opportunity for membranes, J. Membr. Sci. 359(2010) 126-139.[22] K. Ramasubramanian, H. Verweij, W.S.W. Ho, Membrane processes for carbon capture from coal-fired power plant flue gas:A modeling and cost study, J. Membr. Sci. 421(2012) 299-310.[23] P.H. Shao, M. Dal-Cin, M.D. Guiver, A. Kumar, Simulation of membrane-based CO2 capture in a coal-fired power plant, J. Membr. Sci. 427(2013) 451-459.[24] L.S. White, X. Wei, S. Pande, T. Wu, T.C. Merkel, Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate, J. Membr. Sci. 496(2015) 48-57.[25] D.X. Yang, Z. Wang, J.X. Wang, S.C. Wang, Potential of two-stage membrane system with recycle stream for CO2 capture from postcombustion gas, Energy Fuel 23(2009) 4755-4762.[26] M. Yuan, K. Narakornpijit, R. Haghpanah, J. Wilcox, Consideration of a nitrogenselective membrane for postcombustion carbon capture through process modeling and optimization, J. Membr. Sci. 465(2014) 177-184.[27] X.P. Zhang, X.Z. He, T. Gundersen, Post-combustion carbon capture with a gas separation membrane:Parametric study, capture cost, and exergy analysis, Energy Fuel 27(2013) 4137-4149.[28] L. Zhao, E. Riensche, L. Blum, D. Stolten, Multi-stage gas separation membrane processes used in post-combustion capture:Energetic and economic analyses, J. Membr. Sci. 359(2010) 160-172.[29] L. Zhao, E. Riensche, R. Menzer, L. Blum, D. Stolten, A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture, J. Membr. Sci. 325(2008) 284-294.[30] Y. Zhang, X. Ji, X. Lu, Energy consumption analysis for CO2 separation from gas mixtures, Appl. Energy 130(2014) 237-243.[31] A.M. Arias, M.C. Mussati, P.L. Mores, N.J. Scenna, J.A. Caballero, S.F. Mussati, Optimization of multi-stage membrane systems for CO2 capture from flue gas, Int. J. Greenh. Gas Control 53(2016) 371-390.[32] W.F. Yong, T.S. Chung, M. Weber, C. Maletzko, New polyethersulfone (PESU) hollow fiber membranes for CO2 capture, J. Membr. Sci. 552(2018) 305-314.[33] W.F. Yong, Y.X. Ho, T.S. Chung, Nanoparticles embedded in amphiphilic membranes for carbon dioxide separation and dehumidification, ChemSusChem 10(2017) 4046-4055.[34] C.Z. Liang, J.T. Liu, J.Y. Lai, T.S. Chung, High-performance multiple-layer PIM composite hollow fiber membranes for gas separation, J. Membr. Sci. 563(2018) 93-106.[35] C.Z. Liang, W.F. Yong, T.S. Chung, High-performance composite hollow fiber membrane for flue gas and air separations, J. Membr. Sci. 541(2017) 367-377.[36] S.A. Stern, B. Krishnakumar, S.G. Charati, W.S. Amato, A.A. Friedman, D.J. Fuess, Performance of a bench-scale membrane pilot plant for the upgrading of biogas in a wastewater treatment plant, J. Membr. Sci. 151(1998) 63-74.[37] Q. Sun, H.L. Li, J.Y. Yan, L.C. Liu, Z.X. Yu, X.H. Yu, Selection of appropriate biogas upgrading technology-A review of biogas cleaning, upgrading and utilisation, Renew. Sustain. Energy Rev. 51(2015) 521-532.[38] A. Salihu, M.Z. Alam, Upgrading strategies for effective utilization of biogas, Environ. Prog. Sustain. Energy 34(2015) 1512-1520.[39] M. Scholz, T. Melin, M. Wessling, Transforming biogas into biomethane using membrane technology, Renew. Sustain. Energy Rev. 17(2013) 199-212.[40] W.M. Budzianowski, A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment, Renew. Sustain. Energy Rev. 54(2016) 1148-1171.[41] D. Havas, H.Q. Lin, Optimal membranes for biogas upgrade by removing CO2:High permeance or high selectivity? Sep. Sci. Technol. 52(2017) 186-196.[42] P.H. Shao, M. Dal-Cin, A. Kumar, H.B. Li, D.P. Singh, Design and economics of a hybrid membrane-temperature swing adsorption process for upgrading biogas, J. Membr. Sci. 413(2012) 17-28.[43] G. Valenti, A. Arcidiacono, J.A.N. Ruiz, Assessment of membrane plants for biogas upgrading to biomethane at zero methane emission, Biomass Bioenergy 85(2016) 35-47.[44] L. Deng, M.-B. Hagg, Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane, Int. J. Greenh. Gas Control 4(2010) 638-646.[45] A. Makaruk, M. Miltner, M. Harasek, Membrane biogas upgrading processes for the production of natural gas substitute, Sep. Purif. Technol. 74(2010) 83-92.[46] M. Scholz, M. Alders, T. Lohaus, M. Wessling, Structural optimization of membranebased biogas upgrading processes, J. Membr. Sci. 474(2015) 1-10.[47] K.H. Kim, K.J. Baik, I.W. Kim, H.K. Lee, Optimization of membrane process for methane recovery from biogas, Sep. Sci. Technol. 47(2012) 963-971.[48] M. Scholz, M. Alders, J. Lolsberg, M. Wessling, Dynamic process simulation and process control of biogas permeation processes, J. Membr. Sci. 484(2015) 107-118.[49] M. Scholz, B. Frank, F. Stockrneier, S. Falss, M. Wessling, Techno-economic analysis of hybrid processes for biogas upgrading, Ind. Eng. Chem. Res. 52(2013) 16929-16938.[50] R. Bounaceur, E. Berger, M. Pfister, A.A.R. Santos, E. Favre, Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units:MEMSIC simulation tool, J. Membr. Sci. 523(2017) 77-91.[51] W.F. Yong, F.Y. Li, Y.C. Xiao, T.S. Chung, Y.W. Tong, High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation, J. Membr. Sci. 443(2013) 156-169.[52] R.W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res. 41(2002) 1393-1411.[53] B.D. Bhide, S.A. Stern, Membrane processes for the removal of acid gases from natural gas. I. Process configurations and optimization of operating conditions, J. Membr. Sci. 81(1993) 209-237.[54] B.D. Bhide, S.A. Stern, Membrane processes for the removal of acid gases from natural gas. Ⅱ. Effects of operating conditions, economic parameters, and membrane properties, J. Membr. Sci. 81(1993) 239-252.[55] J. Hao, P.A. Rice, S.A. Stem, Upgrading low-quality natural gas with H2S-and CO2-selective polymer membranes. Part I. Process design and economics of membrane stages without recycle streams, J. Membr. Sci. 209(2002) 177-206.[56] J. Hao, P.A. Rice, S.A. Stern, Upgrading low-quality natural gas with H2S-and CO2-selective polymer membranes-Part Ⅱ. Process design, economics, and sensitivity study of membrane stages with recycle streams, J. Membr. Sci. 320(2008) 108-122.[57] F. Ahmad, K.K. Lau, A.M. Shariff, Y.F. Yeong, Temperature and pressure dependence of membrane permeance and its effect on process economics of hollow fiber gas separation system, J. Membr. Sci. 430(2013) 44-55.[58] R. Khalilpour, A. Abbas, Z. Lai, I. Pinnau, Analysis of hollow fibre membrane systems for multicomponent gas separation, Chem. Eng. Res. Des. 91(2013) 332-347.[59] S. Kwon, S. Hwang, M. Binns, Economic response models for membrane design, J. Membr. Sci. 544(2017) 297-305. |