[1] M. Jenne, M. Reuss, A critical assessment on the use of k-ε turbulence models for simulation of the turbulent liquid flow induced by a Rushton-turbine in baffled stirred-tank reactors, Chem. Eng. Sci. 54(17) (1999) 3921-3941. [2] Z. Mao, C. Yang, Perspective to study on macro-mixing in chemical reactors, CIESC J. 66(8) (2015) 2795-2804(in Chinese). [3] X. Duan, D. Cheng, J. Cheng, X. Feng, C. Yang, Research progress on macro-and micro-mixing and intensification in stirred tank reactors, Chem. React. Eng. Technol. 29(3) (2013) 238-246(in Chinese). [4] Z. Chara, B. Kysela, J. Konfrst, I. Fort, Study of fluid flow in baffled vessels stirred by a Rushton standard impeller, Appl. Math. Comput. 272(2016) 614-628. [5] Y. Zhang, Z. Gao, Z. Li, J. Derksen, Transitional flow in a Rushton turbine stirred tank, AIChE J. 63(8) (2017) 3610-3623. [6] G. Montante, K. Lee, A. Brucato, M. Yianneskis, Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels, Chem. Eng. Sci. 56(12) (2001) 3751-3770. [7] A. Ochieng, M. Onyango, A. Kumar, K. Kiriamiti, P. Musonge, Mixing in a tank stirred by a Rushton turbine at a low clearance, Chem. Eng. Process. 47(5) (2008) 842-851. [8] G. Montante, K. Lee, A. Brucato, M. Yianneskis, Experiments and predictions of the transition of the flow pattern with impeller clearance in stirred tanks, Comput. Chem. Eng. 25(4) (2001) 729-735. [9] A. Nienow, Suspension of solid particles in turbine agitated baffled vessels, Chem. Eng. Sci. 23(12) (1968) 1453-1459. [10] S. Kresta, P. Wood, The mean flow field produced by a 45° pitched blade turbine:Changes in the circulation pattern due to off bottom clearance, Can. J. Chem. Eng. 71(1) (1993) 42-53. [11] Z. Li, Y. Bao, Z. Gao, PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks, Chem. Eng. Sci. 66(6) (2011) 1219-1231. [12] P. Armenante, E. Nagamine, J. Susanto, Determination of correlations to predict the minimum agitation speed for complete solid suspension in agitated vessels, Can. J. Chem. Eng. 76(3) (1998) 413-419. [13] P. Armenante, E. Nagamine, Effect of low off-bottom impeller clearance on the minimum agitation speed for complete suspension of solids in stirred tanks, Chem. Eng. Sci. 53(9) (1998) 1757-1775. [14] R. Grenville, J. Giacomelli, D. Brown, Suspension of solid particles in vessels agitated by Rushton turbine impellers, Chem. Eng. Res. Des. 109(2016) 730-733. [15] R. Conti, S. Sicardi, V. Specchia, Effect of the stirrer clearance on particle suspension in agitated vessels, Chem. Eng. J. 22(3) (1981) 247-249. [16] G. Montante, A. Brucato, K. Lee, M. Yianneskis, An experimental study of double-tosingle-loop transition in stirred vessels, Can. J. Chem. Eng. 77(4) (1999) 649-659. [17] S. Ibrahim, A. Nienow, Power curves and flow patterns for a range of impellers in Newtonian fluids:40 < Re < 5×105, Chem. Eng. Res. Des. 73(5) (1995) 485-491. [18] A. Ochieng, M. Onyango, Homogenization energy in a stirred tank, Chem. Eng. Process. 47(9) (2008) 1853-1860. [19] C. Galletti, E. Brunazzi, M. Yianneskis, A. Paglianti, Spectral and wavelet analysis of the flow pattern transition with impeller clearance variations in a stirred vessel, Chem. Eng. Sci. 58(17) (2003) 3859-3875. [20] S. Yeoh, G. Papadakis, M. Yianneskis, Determination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation, Chem. Eng. Sci. 60(8) (2005) 2293-2302. [21] M. Lundén, O. Stenberg, B. Andersson, Evaluation of a method for measuring mixing time using numerical simulation and experimental method, Chem. Eng. Commun. 139(1) (1995) 115-136. [22] Q. Zhang, C. Yang, Z. Mao, J. Mu, Large eddy simulation of turbulent flow and mixing time in a gas-liquid stirred tank, Ind. Eng. Chem. Res. 51(30) (2012) 10124-10131. [23] G. Zhang, J. Min, Z. Gao, G. Niu, L. Shi, Numerical simulation of mixing process in a stirred tank with Rushton turbine, J. Beijing Univ. Chem. Technol. 31(6) (2004) 24-27(in Chinese). [24] Y. Miao, J. Pan, Numerical simulation of mixing time in agitated tank with axial agitator blade, China Synth. Rubber Ind. 30(1) (2007) 5-9(in Chinese). [25] Y. Miao, J. Pan, G. Zhang, J. Min, Z. Gao, Numerical simulation of mixing process in stirred tanks with dural Rushton turbine, J. East China Univ. Sci. Technol. 32(3) (2006) 352-356(in Chinese). [26] Z. Mao, C. Yang, Micro-mixing in chemical reactors:a perspective, Chin. J. Chem. Eng. 25(4) (2017) 381-390. [27] R. Zadghaffari, J. Moghaddas, J. Revstedt, A mixing study in a double-Rushton stirred tank, Comput. Chem. Eng. 33(7) (2009) 1240-1246. [28] L. Shi, Z. Gao, J. Min, Large eddy simulation for mixing time in stirred tank with dural Rushton turbines, CIESC J. 61(7) (2010) 1747-1752(in Chinese). [29] N. Forum, E. Paul, S. Kresta, V. Atiemoobeng, Handbook of Industrial Mixing:Science and Practice, John Wiley & Sons Inc, Hobken, 2013. [30] D. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, Oxford, 1972. [31] Z. Jaworski, W. Bujalski, N. Otomo, A. Nienow, CFD study of homogenization with dual rushton turbines-comparison with experimental results, part I:Initial studies, Chem. Eng. Res. Des. 78(3) (2000) 327-333. [32] J. Gimbun, C. Rielly, Z. Nagy, J. Derksen, Detached eddy simulation on the turbulent flow in a stirred tank, AIChE J. 58(10) (2012) 3224-3241. [33] G. Ascanio, Mixing time in stirred vessels:A review of experimental techniques, Chin. J. Chem. Eng. 23(7) (2015) 1065-1076. [34] F. Fakheri, J. Moghaddas, S. Fereidoni, H. Attar, Investigation of the effects of various parameters on mixing time in pilot stirred tank equipped single and dual Rushton impeller, Indian J. Chem. Technol. 24(3) (2017) 344-351. [35] Y. Liang, D. Gao, L. Bai, Numerical simulation of the laminar flow field and mixing time in stirred tank with double layer impeller, J. Mech. Eng. 51(16) (2015) 185-195(in Chinese). [36] C. Yang, Z. Mao, Numerical Simulation of Multiphase Reactors with Continuous Liquid Phase, Academic Press, Oxford, 2014. [37] J. Tao, J. Huang, H. Xiao, C. Yang, Q. Huang, Influences of interstage height and superficial gas velocity in the multistage internal airlift loop reactor on the performance of mixing and mass transfer, CIESC J. 69(7) (2018) 2878-2889(in Chinese). [38] Q. Huang, F. Jiang, L. Wang, C. Yang, Design of photobioreactors for mass cultivation of photosynthetic organisms, Engineering 3(3) (2017) 318-329. |