Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (7): 1618-1629.DOI: 10.1016/j.cjche.2018.11.019
• Separation Science and Engineering • Previous Articles Next Articles
Marek Wasilewski1, Stanis?aw Anweiler2, Maciej Masiukiewicz2
Received:
2018-06-29
Online:
2019-10-14
Published:
2019-07-28
Contact:
Marek Wasilewski
Supported by:
Marek Wasilewski1, Stanis?aw Anweiler2, Maciej Masiukiewicz2
通讯作者:
Marek Wasilewski
基金资助:
Marek Wasilewski, Stanis?aw Anweiler, Maciej Masiukiewicz. Characterization of multiphase gas-solid flow and accuracy of turbulence models for lower stage cyclones used in suspension preheaters[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1618-1629.
Marek Wasilewski, Stanis?aw Anweiler, Maciej Masiukiewicz. Characterization of multiphase gas-solid flow and accuracy of turbulence models for lower stage cyclones used in suspension preheaters[J]. 中国化学工程学报, 2019, 27(7): 1618-1629.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.11.019
[1] C. Abels, F. Carstensen, M. Wessling, Membrane processes in biorefinery applications, J. Membr. Sci. 444(2013) 285-317. [2] M. Balat, H. Balat, Recent trends in global production and utilization of bioethanol fuel, Appl. Energy 86(2009) 2273-2282. [3] X. Feng, R.Y.M. Huang, Liquid separation by membrane pervaporation, Ind. Eng. Chem. Res. 36(1997) 1048-1066. [4] L.Y. Jiang, Y. Wang, T.S. Chung, X.Y. Qiao, J.Y. Lai, Polyimides membranes for pervaporation and biofuels separation, Prog. Polym. Sci. 34(2009) 1135-1160. [5] L.M. Vane, Separation technologies for recovery and dehydration of alcohols from fermentation broths, Biofuels, Bioprod. Biorefin. 2(2008) 553-588. [6] P. Shao, R.Y.M. Huang, Polymeric membrane pervaporation, J. Membr. Sci. 287(2007) 162-179. [7] A. Jonquières, R. Clément, P. Lochon, J. Néel, M. Dresch, B. Chrétien, Industrial state-of-the-art of pervaporation and vapour permeation in the western countries, J. Membr. Sci. 206(2002) 87-117. [8] N.G. Kanse, S.D. Dawande, A review of pervaporation membrane system for the separation of ethanol/water (azeotropic mixture), Int. J. Eng. Sci. Res. Technol. 4(2015) 472-479. [9] B. Bolto, M. Hoang, Z. Xie, A review of membrane selection for the dehydration of aqueous ethanol by pervaporation, Chem. Eng. Process. 50(2011) 227-235. [10] P.D. Chapman, T. Oliveira, A.G. Livingston, K. Li, Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci. 318(2008) 5-37. [11] S. Lue, D. Lee, J. Chen, C. Chiu, C. Hu, Y. Jean, J. Lai, Diffusivity enhancement of water vapor in poly(vinyl alcohol)-fumed silica nano-composite membranes:correlation with polymer crystallinity and free-volume properties, J. Membr. Sci. 325(2008) 831-839. [12] B. Bolto, T. Tran, M. Hoang, Z. Xie, Crosslinked poly(vinyl alcohol) membranes, Prog. Polym. Sci. 24(2009) 969-981. [13] X.J. Meng, Q.L. Liu, A.M. Zhu, Q.G. Zhang, Amino-functionalized poly(vinyl alcohol) membranes for enhanced water permselectivity, J. Membr. Sci. (2010) 276-283. [14] J.M. Gohil, A. Bhattacharya, P. Ray, Studies on the cross-linking of poly(vinyl alcohol), J. Polym. Res. 13(2006) 161-169. [15] J.-S. Park, J.-W. Park, E. Ruckenstein, On the viscoelastic properties of poly (vinyl alcohol) and chemically crosslinked poly(vinyl alcohol), J. Appl. Polym. Sci. 82(2001) 1816-1823. [16] P. Meng, C. Chen, L. Yu, J. Li, W. Jiang, Crosslinking of PVA pervaporation membrane by maleic acid, Tsinghua Sci. Technol. 5(2000) 172-175. [17] C. Birck, S. Degoutin, N. Tabary, V. Miri, M. Bacquet, New crosslinked cast films based on poly(vinyl alcohol):preparation and physico-chemical properties, eXPRESS Polym. Lett. 8(2014) 941-952. [18] S. Chaudhari, Y. Kwon, M. Moon, M. Shon, S. Nam, Y. Park, Poly(vinyl alcohol) and poly(vinylamine) blend membranes for isopropanol dehydration, J. Appl. Polym. Sci. 134(2017). [19] Q.G. Zhang, Q.L. Liu, Z.Y. Jiang, Y. Chen, Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes, J. Membr. Sci. 287(2007) 237-245. [20] L.L. Xia, C.L. Li, Y. Wang, In-situ crosslinked PVA/organosilica hybrid membranes for pervaporation separations, J. Membr. Sci. 498(2016) 263-275. [21] S.S. Kulkarni, S.M. Tambe, A.A. Kittur, M.Y. Kariduraganavar, S.S. Kulkarni, A.A. Kittur, Preparation of novel composite membranes for the pervaporation separation of water-acetic acid mixtures, J. Membr. Sci. 285(2006) 420-431. [22] S.Y. Hu, Y. Zhang, D. Lawless, X. Feng, Composite membranes comprising of polyvinylamine-poly(vinyl alcohol) incorporated with carbon nanotubes for dehydration of ethylene glycol by pervaporation, J. Membr. Sci. 417-418(2012) 34-44. [23] N.H. Hieu, N.N.P. Duy, Fabrication, characterisation, and pervaporation performance of graphene/poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration, Chem. Eng. Trans. 56(2017) 6. [24] T.-M. Yeh, Z. Wang, D. Mahajan, B.S. Hsiao, B. Chu, High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers, J. Mater. Chem. A 1(2013) 12998-13003. [25] A. Gautam, S. Ram, Preparation and thermomechanical properties of Ag-PVA nanocomposite films, Mater. Chem. Phys. 119(2010) 266-271. [26] I. Cǎlinescu, M. Pǎtras cu, A.I. Gavrilǎ, A. Trifan, C. Boscornea, Synthesis and characterisation of silver nanoparticles in the presence of PVA and tannic acid, UPB scientific bulletin, Series B:Chem. Mater. Sci. 73(2011). [27] Y. Li, T. Verbiest, R. Strobbe, I.F.J. Vankelecom, Improving the performance of pervaporation membranes via localized heating through incorporation of silver nanoparticles, J. Mater. Chem. A 1(2013) 15031-15038. [28] A.M.S.H.G. Premakshi, Arjumand A. Kittur, Mahadevappa Y. Kariduraganavar, Enhancement of pervaporation performance of composite membranes through in situ generation of silver nanoparticles in poly(vinyl alcohol) matrix, J. Appl. Polym. Sci. 132(2015) 11. [29] S. Chaudhari, Y. Kwon, M. Moon, M. Shon, S. Nam, Y. Park, In situ generation of silvernanoparticlesinpoly(vinylalcohol)/poly(acrylicacid)polymermembranes in the absence of reducing agent and their effect on pervaporation of a water/acetic acid mixture, Bull. Korean Chem. Soc. 37(2016) 1985-1991. [30] N.V. Bhat, N.S. Karmakar, D.C. Kothari, Synthesis of nanocomposites of polyvinyl alcohol with silver nanoparticles and their use, Int. J. Nanosci. 12(2013) 8. [31] A. Gautam, G.P. Singh, S. Ram, A simple polyol synthesis of silver metal nanopowder of uniform particles, Synth. Met. 157(2007) 5-10. [32] R. Bryaskova, D. Pencheva, G.M. Kale, U. Lad, T. Kantardjiev, Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films, J. Colloid Interface Sci. 349(2010) 77-85. [33] D. Pencheva, R. Bryaskova, T. Kantardjiev, Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles, Mater. Sci. Eng. C 32(2012) 2048-2051. [34] R.S. Patil, M.R. Kokate, C.L. Jambhale, S.M. Pawar, S.H. Han, S.S. Kolekar, Onepot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application, Adv. Nat. Sci.:Nanosci. Nanotechnol. 3(2012). [35] Chueh-Jung Huang, Chih-Chao Yen, T.C. Chang, Studies on the preparation and properties of conductive polymers. Ⅲ. Metallized polymer films by retroplating out, J. Appl. Polym. Sci. 42(1991) 2237-2245. [36] H.M. Zidan, Effect of AgNO3 filling and UV-irradiation on the structure and morphology of PVA films, Polym. Test. 18(1999) 449-461. [37] N. Valentínyi, E. Cséfalvay, P. Mizsey, Modelling of pervaporation:parameter estimation and model development, Chem. Eng. Res. Des. 91(2013) 174-183. [38] A. Šileikaite·, I. Prosyčeva, J. Puišo, A. Juraitis, A. Guobiene·, Analysis of silver nanoparticles produced by chemical reduction of silver salt solution, Mater. Sci. (MEDŽIAGOTYRA) 12(2006) 287-291. [39] Z.H. Mbhele, M.G. Salemane, C.G.C.E.V. Sittert, J.M. Nedeljković, V. Djoković, A. S. Luyt, Fabrication and characterization of silver-polyvinyl alcohol nanocomposites, Chem. Mater. 15(2003) 5019-5024. [40] H.S. Mansur, C.M. Sadahira, A.N. Souza, A.A.P. Mansur, FTIR, spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Mater. Sci. Eng.:C 28(2008) 539-548. [41] A. Hasimi, A. Stavropoulou, K.G. Papadokostaki, M. Sanopoulou, Transport of water in polyvinyl alcohol films:effect of thermal treatment and chemical crosslinking, Eur. Polym. J. 44(2008) 4098-4107. [42] B. Karthikeyan, Spectroscopic studies on Ag-polyvinyl alcohol nanocomposite films, Phys. B 364(2005) 328-332. [43] M. Ghanipour, D. Dorranian, Effect of Ag-nanoparticles doped in polyvinyl alohol on the structural and optical properties of PVA Films, J. Nanomater. 2013(2013) 10. [44] H.G. Premakshi, A.M. Sajjan, A.A. Kittur, M.Y. Kariduraganavar, Enhancement of pervaporation performance of composite membranes through in situ generation of silver nanoparticles in poly(vinyl alcohol) matrix, J. Appl. Polym. Sci. 132(2015) 1-11. [45] J.B. González-Campos, E. Prokhorov, I.C. Sanchez, J.G. Luna-Bárcenas, A. Manzano-Ramírez, J. González-Hernández, Y. López-Castro, R.E.D. Río, Molecular dynamics analysis of PVA-AgnP composites by dielectric spectroscopy, J. Nanomater. (2012, 2012,) 11. [46] A.S. Kutsenko, V.M. Granchak, Photochemical synthesis of silver nanoparticles in polyvinyl alcohol matrices, Theoretical Exp. Chem. 45(2009) 313-318. [47] S. Ram, A. Gautam, H.J. Fecht, J. Cai, J. Bansmann, R.J. Behm, A new allotropic structure of silver nanocrystals nucleated and grown over planar polymer molecules, Philos. Mag. Lett. 87(2007) 361-372. [48] S. Clémenson, D. Léonard, D. Sage, L. David, E. Espuche, Metal nanocomposite films prepared in situ from PVA and silver nitrate:study of the nanostructuration process and morphology as a function of the in situ routes, J. Polym. Sci., Part A:Polym. Chem. 46(2008) 2062-2071. [49] J.M. Devi, M. Umadevi, Synthesis and characterization of silver-PVA nanocomposite for sensor and antibacterial applications, J. Cluster Sci. 52(2013) 12. [50] V.V. Vodnik, Z.S. aponjić, J.V. Dz unuzović, U. Bogdanović, M. Mitrić, J. Nedeljković, Anisotropic silver nanoparticles as filler for the formation of hybrid nanocomposites, Mater. Res. Bull. 48(2013) 52-57. [51] H. Zhang, Y. Wang, Poly(vinyl alcohol)/ZIF-8-NH 2 mixed matrix membranes for ethanol dehydration via pervaporation, AIChE J. 62(2016) 1728-1739. [52] Q. Liu, H. Wang, C. Wu, Z. Wei, H. Wang, In-situ generation of iron-dopamine nanoparticles with hybridization and cross-linking dual-functions in poly (vinyl alcohol) membranes for ethanol dehydration via pervaporation, Sep. Purif. Technol. 188(2017) 282-292. [53] T. Galya, V. Sedlarík, I. Kuritka, R. Novotný, J. Sedlaíková, P. Sáha, Antibacterial poly(vinyl alcohol) film containing silver nanoparticles:preparation and characterization, J. Appl. Polym. Sci. 110(2008) 3178-3185. [54] M.G. Katz, T. Wydeven, Selective permeability of PVA membranes. Ⅱ. heattreated membranes, J. Appl. Polym. Sci. 27(1982) 79-87. [55] A.N. Vasiliev, E.A. Gulliver, J.G. Khinast, R.E. Riman, Highly dispersible polymer-coated silver nanoparticles, Surf. Coat. Technol. 203(2009) 3. [56] Y. Ueda, T. Tanaka, A. Iizuka, Y. Sakai, T. Kojima, S. Satokawa, A. Yamasaki, Membrane separation of ethanol from mixtures of gasoline and bioethanol with heat-treated PVA membranes, Ind. Eng. Chem. Res. 50(2011) 1023-1027. [57] I. Medina-Ramirez, S. Bashir, Z. Luo, J.L. Liu, Green synthesis and characterization of polymer-stabilized silver nanoparticles, Colloids Surf., B 73(2009) 185-191. [58] A. Noorjahan, P. Choi, Effect of free volume redistribution on the diffusivity of water and benzene in poly(vinyl alcohol), Chem. Eng. Sci. 121(2015) 258-267. [59] S. Ravindra, V. Rajinikanth, A.F. Mulaba-Bafubiandi, V.S. Vallabhapurapu, Performance enhancement of the poly (vinyl alcohol) (PVA) by activated natural clay clinoptilolite for pervaporation separation of aqueous-organic mixtures, Desalin. Water Treat. 57(2015) 4920-4934. [60] R.M. Hodge, T.J. Bastow, G.H. Edward, G.P. Simon, A.J. Hill, Free volume and the mechanism of plasticization in water-swollen poly(vinyl alcohol), Macromolecules 29(1996) 8137-8143. [61] T. Ji, L. Chen, L. Mu, R. Yuan, H. Wang, M. Knoblauch, F.S. Bao, J. Zhu, Heterogeneous nucleation/growth of silver nanoparticles onto oxygenated mesoporous carbon:alcohol effect and catalytic property, Catal. Commun. 77(2016) 65-69. [62] Z. Khan, S.A. AL-Thabaiti, A.Y. Obaid, Z.A. Khan, A.O. Al-Youbi, Effects of solvents on the stability and morphology of CTAB-stabilized silver nanoparticles, Colloids Surf. A:Physicochem. Eng. Aspects 390(2011) 120-125. [63] M.J. Lippits, B.E. Nieuwenhuys, Direct conversion of ethanol into ethylene oxide on copper and silver nanoparticles:effect of addition of CeOx and Li2O, Catal. Today 154(2010) 127-132. [64] Y.Q. Liang, Z.D. Cui, S.L. Zhu, Y. Liu, X.J. Yang, Silver nanoparticles supported on TiO2 nanotubes as active catalysts for ethanol oxidation, J. Catal. 278(2011) 276-287. [65] H. Zhang, Y. Shang, J. Zhao, J. Wang, Enhanced electrocatalytic activity of ethanol oxidation reaction on palladium silver nanoparticles via removable surface ligands, ACS Appl. Mater. Interfaces 9(2017) 16635-16643. [66] K.-J. Kim, S.-H. Park, W.-W. So, S.-J. Moon, Pervaporation separation of aqueous organic mixtures through sulfated zirconia-poly(vinyl alcohol) membrane, J. Appl. Polym. Sci. 79(2001) 1450-1455. [67] M. Samei, M. Iravanini, T. Mohammadi, A.A. Asadi, Solution diffusion modeling of a composite PVA/fumed silica ceramic supported membrane, Chem. Eng. Process. Process Intensif. 109(2016) 11-19. [68] N.H. Hieu, T.L. Anh, N.N.P. Duy, Fabrication and characterization of graphene/graphene oxide based poly (vinyl alcohol) nanocomposite membranes for pervaporation dehydration of ethanol, Can Tho Univ. J. Sci. (2016) 36-45. [69] D.P. Suhas, T.M. Aminabhavi, A.V. Raghu, Mixed matrix membranes of HZSM5-loaded poly(vinyl alcohol) used in pervaporation dehydration of alcohols:influence of silica/alumina ratio, Polym. Eng. Sci. 54(2014) 1774-1782. [70] Y.M. Lee, Modified chitosan membranes for pervaporation, Desalination 90(1993) 277-290. [71] T. Peter, N. Benes, H. Buijs, F. Vercauteren, J. Keurentjes, Thin high flux ceramic-supported PVA membranes, Desalination 200(2006) 37-39. [72] R.W.V. Gemert, F.P. Cuperus, Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation, J. Membr. Sci. 105(1995) 287. |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[3] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[4] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[5] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[6] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[7] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[8] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[9] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[10] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[11] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[12] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[13] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[14] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[15] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||