Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (3): 483500.DOI: 10.1016/j.cjche.2018.11.028
• Reviews • Next Articles
Dongyue Li^{1,2}, Zhipeng Li^{1}, Zhengming Gao^{1}
Received:
20180321
Revised:
20181004
Online:
20190425
Published:
20190328
Contact:
Zhengming Gao,Email address:gaozm@mail.buct.edu.cn
Dongyue Li^{1,2}, Zhipeng Li^{1}, Zhengming Gao^{1}
通讯作者:
Zhengming Gao,Email address:gaozm@mail.buct.edu.cn
Dongyue Li, Zhipeng Li, Zhengming Gao. Quadraturebased moment methods for the population balance equation: An algorithm review[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 483500.
Dongyue Li, Zhipeng Li, Zhengming Gao. Quadraturebased moment methods for the population balance equation: An algorithm review[J]. 中国化学工程学报, 2019, 27(3): 483500.
[1]  V. Buwa, V. Ranade, Dynamics of gasliquid flow in a rectangular bubble column:experiments and single/multigroup CFD simulations, Chem. Eng. Sci. 57(2002) 47154736. 
[2]  S. Wang, J. Wen, Y. Li, H. Yang, Y. Li, J. Tu, Numerical prediction for subcooled boiling flow of liquid nitrogen in a vertical tube with MUSIG model, Chin. J. Chem. Eng. 21(2013) 11951205. 
[3]  J. Cheng, Q. Li, C. Yang, Y. Zhang, Z. Mao, CFDPBE simulation of a bubble column in OpenFOAM, Chin. J. Chem. Eng. 26(2018) 17731784. 
[4]  M. Bhole, J. Joshi, D. Ramkrishna, CFD simulation of bubble columns incorporating population balance modeling, Chem. Eng. Sci. 63(2008) 22672282. 
[5]  A. Buffo, D. Marchisio, M. Vanni, P. Renze, Simulation of coalescence, break up and mass transfer in gasliquid systems by using Monte Carlo and quadraturebased moment methods, Ninth International Conference on CFD in the Minerals and Process Industries, Melbourne, 2012. 
[6]  A. Buffo, M. Vanni, D. Marchisio, R. Fox, Multivariate quadraturebased moments methods for turbulent polydisperse gasliquid systems, Int. J. Multiphase Flow 50(2013) 4157. 
[7]  Y. Liao, D. Lucas, E. Krepper, Application of new closure models for bubble coalescence and breakup to steamwater vertical pipe flow, Nucl. Eng. Des. 279(2014) 126136. 
[8]  Y. Liao, D. Lucas, Polydisperse simulation of condensing steamwater flow inside a large vertical pipe, Int. J. Therm. Sci. 104(2016) 194207. 
[9]  Y. Bao, J. Yang, B. Wang, Z. Gao, Influence of impeller diameter on local gas dispersion properties in a sparged multiimpeller stirred tank, Chin. J. Chem. Eng. 23(2015) 615622. 
[10]  X. Liang, H. Pan, Y. Su, Z. Luo, CFDPBM approach with modified drag model for the gasliquid flow in a bubble column, Chem. Eng. Res. Des. 112(2016) 88102. 
[11]  H. Pan, X. Chen, X. Liang, L. Zhu, Z. Luo, CFD simulations of gasliquidsolid flow in fluidized bed reactorsa review, Powder Technol. 299(2016) 235258. 
[12]  D. Cheng, S. Wang, C. Yang, Z. Mao, Numerical simulation of turbulent flow and mixing in gasliquidliquid stirred tanks, Ind. Eng. Chem. Res. 56(2017) 1305013063. 
[13]  K. Guo, T. Wang, Y. Liu, J. Wang, CFDPBM simulations of a bubble column with different liquid properties, Chem. Eng. J. 329(2017) 116127. 
[14]  G. Yang, K. Guo, T. Wang, Numerical simulation of the bubble column at elevated pressure with a CFDPBM coupled model, Chem. Eng. Sci. 170(2017) 251262. 
[15]  M. Jaradat, M. Attarakih, H. Bart, Effect of phase dispersion and mass transfer direction on steady state RDC performance using population balance modelling, Chem. Eng. J. 165(2010) 379387. 
[16]  V. Alopaeus, Analysis of concentration polydispersity in mixed liquidliquid systems, Chem. Eng. Res. Des. 92(2014) 612618. 
[17]  J. Mitre, P. Lage, M. Souza, E. Silva, L. Barca, A. Moraes, R. Coutinho, E. Fonseca, Droplet breakage and coalescence models for the flow of waterinoil emulsions through a valvelike element, Chem. Eng. Res. Des. 92(2014) 24932508. 
[18]  M. Attarakih, S. Alzyod, M. Hlawitschke, H. Bart, OPOSSIM:a population balanceSIMULINK module for modelling coupled hydrodynamics and mass transfer in liquid extraction equipment, ComputAided, Chem. Eng. 37(2015) 257262. 
[19]  J. Favero, L. Silva, P. Lage, Modeling and simulation of mixing in waterinoil emulsion flow through a valvelike element using a population balance model, Comput. Chem. Eng. 75(2015) 155170. 
[20]  A. Buffo, V. Alopaeus, Solution of bivariate population balance equations with highorder momentconserving method of classes, Comput. Chem. Eng. 87(2016) 111124. 
[21]  Z. Gao, D. Li, A. Buffo, W. Podgorska, D. Marchisio, Simulation of droplet breakage in turbulent liquidliquid dispersions with CFDPBM:Comparison of breakage kernels, Chem. Eng. Sci. 142(2016) 277288. 
[22]  A. Bourdillon, P. Verdin, C. Thompson, Numerical simulations of drop size evolution in a horizontal pipeline, Int. J. Multiphase Flow 78(2016) 4458. 
[23]  D. Li, A. Buffo, W. Podgorska, Z. Gao, D. Marchisio, Droplet breakage and coalescence in liquidliquid dispersions:comparison of different kernels with EQMOM and QMOM, AICHE J. 63(2017) 22932311. 
[24]  D. Li, A. Buffo, W. Podgorska, D. Marchisio, Z. Gao, Investigation of droplet breakup in liquidliquid dispersions by CFDPBM simulations:The influence of the surfactant type, Chin. J. Chem. Eng. 25(2017) 13691380. 
[25]  S. Alzyod, M. Attarakih, A. Hasseine, H. Bart, Steady state modeling of Kuhni liquid extraction column using the Spatially Mixed Sectional Quadrature Method of Moments (SMSQMOM), Chem. Eng. Res. Des. 117(2017) 549556. 
[26]  A. Misra, L. De Souza, M. Illner, L. Hohl, M. Kraume, J. Repke, D. Thevenin, Simulating separation of a multiphase liquidliquid system in a horizontal settler by CFD, Chem. Eng. Sci. 167(2017) 242250. 
[27]  C. Qin, C. Chen, Q. Xiao, N. Yang, C. Yuan, C. Kunkelmann, M. Cetinkaya, K. Mulheims, CFDPBM simulation of droplets size distribution in rotorstator mixing devices, Chem. Eng. Sci. 155(2016) 1626. 
[28]  L. Xie, Q. Liu, Z. Luo, A multiscale CFDPBM coupled model for the kinetics and liquidliquid dispersion behavior in a suspension polymerization stirred tank, Chem. Eng. Res. Des. 130(2018) 117. 
[29]  R. Fox, F. Laurent, M. Massot, Numerical simulation of spray coalescence in an Eulerian framework:direct quadrature method of moments and multifluid method, J. Comput. Phys. 227(2008) 30583088. 
[30]  R. Fox, A quadraturebased thirdorder moment method for dilute gasparticle flows, J. Comput. Phys. 227(2008) 63136350. 
[31]  O. Desjardins, R. Fox, P. Villedieu, A quadraturebased moment method for dilute fluidparticle flows, J. Comput. Phys. 227(2008) 25142539. 
[32]  A. Passalacqua, R. Fox, Implementation of an iterative solution procedure for multifluid gasparticle flow models on unstructured grids, Powder Technol. 213(2011) 174187. 
[33]  W. Yan, J. Li, Z. Luo, A CFDPBM coupled model with polymerization kinetics for multizone circulating polymerization reactors, Powder Technol. 231(2012) 7787. 
[34]  M. Hussain, M. Peglow, E. Tsotsas, J. Kumar, Modeling of aggregation kernel using Monte Carlo simulations of spray fluidized bed agglomeration, AIChE J. 60(2014) 855868. 
[35]  W. Yan, Z. Luo, Y. Lu, X. Chen, A CFDPBMPMLM integrated model for the gassolid flow fields in fluidized bed polymerization reactors, AIChE J. 58(2012) 17171732. 
[36]  M. Hussain, J. Kumar, E. Tsotsas, Micromacro transition of population balances in fluidized bed granulation, Procedia. Eng. 102(2015) 13991407. 
[37]  Y. Yao, J. Su, Z. Luo, CFDPBM modeling polydisperse polymerization FBRs with simultaneous particle growth and aggregation:the effect of the method of moments, Powder Technol. 272(2015) 142152. 
[38]  T. Nguyen, F. Laurent, R. Fox, M. Massot, Solution of population balance equations in applications with fine particles:mathematical modeling and numerical schemes, J. Comput. Phys. 325(2016) 129156. 
[39]  E. Ghadirian, J. Abbasian, H. Arastoopour, CFD simulation of particle size change during the coal char gasification process using the population balance model with FCMOM, Powder Technol. 323(2017) 128138. 
[40]  B. Kong, R. Fox, A solution algorithm for fluidparticle flows across all flow regimes, J. Comput. Phys. 344(2017) 575594. 
[41]  B. Kong, R. Fox, H. Feng, J. Capecelatro, R. Patel, O. Desjardins, Eulereuler anisotropic gaussian mesoscale simulation of homogeneous clusterinduced gasparticle turbulence, AIChE J. 63(2017) 26302643. 
[42]  S. Shekar, A. Smith, W. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, J. Aerosol Sci. 44(2012) 8398. 
[43]  R. Guichard, A. Taniere, E. Belut, N. Rimbert, Simulation of nanoparticle coagulation under Brownian motion and turbulence in a differentialalgebraic framework:Developments and applications, Int. J. Multiphase Flow 64(2014) 7384. 
[44]  M. Yu, J. Lin, Hybrid method of moments with interpolation closureTaylorseries expansion method of moments scheme for solving the Smoluchowski coagulation equation, Appl. Math. Model. 52(2017) 94106. 
[45]  M. Yu, Y. Liu, A. Koivisto, An efficient algorithm scheme for implementing the TEMOM for resolving aerosol dynamics, Aerosol Sci. Eng. 1(2017) 119137. 
[46]  P. Marchal, R. David, J. Klein, J. Villermaux, Crystallization and precipitation engineeringI. An efficient method for solving population balance in crystallization with agglomeration, Chem. Eng. Sci. 43(1988) 5967. 
[47]  F. Puel, G. Fevotte, J. Klein, Simulation and analysis of industrial crystallization processes through multidimensional population balance equations. Part 1:a resolution algorithm based on the method of classes, Chem. Eng. Sci. 58(2003) 37153727. 
[48]  S. Qamar, G. Warnecke, Numerical solution of population balance equations for nucleation, growth and aggregation processes, Comput. Chem. Eng. 31(2007) 15761589. 
[49]  J. Liu, C. Ma, X. Wang, Imaging protein crystal growth behaviour in batch cooling crystallization, Chin. J. Chem. Eng. 24(2016) 101108. 
[50]  A. Majumder, V. Kariwala, S. Ansumali, A. Rajendran, Lattice boltzmann method for population balance equations with simultaneous growth, nucleation, aggregation and breakage, Chem. Eng. Sci. 69(2012) 316328. 
[51]  S. Cheung, L. Deju, G. Yeoh, J. Tu, Modeling of bubble size distribution in isothermal gasliquid flows:Numerical assessment of population balance approaches, Nucl. Eng. Des. 265(2013) 120136. 
[52]  T. Vetter, M. Iggland, D. Ochsenbein, F. Hanseler, M. Mazzotti, Modeling nucleation, growth, and ostwald ripening in crystallization processes:a comparison between population balance and kinetic rate equation, Cryst. Growth Des. 13(2013) 48904905. 
[53]  A. Hasseine, H. Bart, A domian decomposition method solution of population balance equations for aggregation, nucleation, growth and breakup processes, Appl. Math. Model. 39(2015) 19751984. 
[54]  J. Cheng, C. Yang, M. Jiang, Q. Li, Z. Mao, Simulation of antisolvent crystallization in impinging jets with coupled multiphase flowmicromixingPBE, Chem. Eng. Sci. 171(2017) 500512. 
[55]  S. Rigopoulos, Population balance modelling of polydispersed particles in reactive flows, Prog. Energy Combust. 36(2010) 412443. 
[56]  E. Abbasi, H. Arastoopour, Numerical simulation of CO2 removal process using solid sorbent in a fluidized bed:A CFDPBE model, 2011 AIChE Annual Meeting, Minneapolis, USA, 2011. 
[57]  J. Akroyd, A. Smith, R. Shirley, L. McGlashan, M. Kraft, A coupled CFDpopulation balance approach for nanoparticle synthesis in turbulent reacting flows, Chem. Eng. Sci. 66(2011) 37923805. 
[58]  E. Yapp, D. Chen, J. Akroyd, S. Mosbach, M. Kraft, J. Camacho, H. Wang, Numerical simulation and parametric sensitivity study of particle size distributions in a burnerstabilised stagnation flame, Combust. Flame 162(2015) 25692581. 
[59]  E. Abbasi, J. Abbasian, H. Arastoopour, CFDPBE numerical simulation of CO2 capture using MgObased sorbent, Powder Technol. 286(2015) 616628. 
[60]  E. Yapp, C. Wells, J. Akroyd, S. Mosbach, R. Xu, M. Kraft, Modelling PAH curvature in laminar premixed flames using a detailed population balance model, Combust. Flame 176(2017) 172180. 
[61]  A. Boje, J. Akroyd, S. Sutcliffe, J. Edwards, M. Kraft, Detailed population balance modelling of Tio2 synthesis in an industrial reactor, Chem. Eng. Sci. 164(2017) 219231. 
[62]  S. Mosbach, W. Menz, M. Kraft, Outlier analysis for a silicon nanoparticle population balance model, Combust. Flame 177(2017) 8997. 
[63]  A. Zucca, D. Marchisio, A. Barresi, R. Fox, Implementation of the population balance equation in CFD codes for modelling soot formation in turbulent flames, Chem. Eng. Sci. 61(2006) 8795. 
[64]  D. Chen, Z. Zainuddin, E. Yapp, J. Akroyd, S. Mosbach, M. Kraft, A fully coupled simulation of PAH and soot growth with a population balance model, Proc. Combust. Inst. 34(2013) 18271835. 
[65]  B. Wang, S. Mosbach, S. Schmutzhard, S. Shuai, Y. Huang, M. Kraft, Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model, Appl. Energy 163(2016) 154166. 
[66]  G. Song, Y. Li, W. Wang, K. Jiang, Z. Shi and S. Yao, Hydrate agglomeration modelling and pipeline hydrate slurry flow behavior simulation, Chin. J. Chem. Eng., doi:10.1016/j.cjche.2018.04.004. 
[67]  O. Emre, R. Fox, M. Massot, S. De Chaisemartin, S. Jay, F. Laurent, Towards Eulerian modeling of a polydisperse evaporating spray under realistic internalcombustionengine conditions, Flow Turbul. Combust. 93(2014) 689722. 
[68]  M. Hussain, J. Kumar, E. Tsotsas, A new framework for population balance modeling of spray fluidized bed agglomeration, Particuology 19(2015) 141154. 
[69]  D. Kah, O. Emre, Q. Tran, S. De Chaisemartin, S. Jay, F. Laurent, M. Massot, High order moment method for polydisperse evaporating sprays with mesh movement:application to internal combustion engines, Int. J. Multiphase Flow 71(2015) 3865. 
[70]  M. Essadki, S. De Chaisemartin, M. Massot, F. Laurent, A. Larat, S. Jay, A new high order moment method for polydisperse evaporating sprays dedicated to the coupling with separated twophase flows in automotive engine, 9th International Conference on Multiphase Flow (ICMF), Italy, 2016. 
[71]  M. Essadki, S. De Chaisemartin, F. Laurent, M. Massot, High order moment model for polydisperse evaporating sprays towards interfacial geometry, SIAM J. Appl. Math. 78(2018) 20032027. 
[72]  A. Sibra, J. Dupays, A. Murrone, F. Laurent, M. Massot, Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors:Efficient strategy using Eulerian MultiFluid methods, J. Comput. Phys. 339(2017) 210246. 
[73]  D. Marchisio, R. Fox, Computational models for polydisperse particulate and multiphase systems, Cambridge University Press, 2013. 
[74]  D. Ramkrishna, M. Singh, Population balance modeling:current status and future prospects, Annu. Rev. Chem. Biomol. 5(2014) 123146. 
[75]  J. Solsvik, H. Jakobsen, The foundation of the population balance equation:a review, J. Dispers. Sci. Technol. 36(2015) 510520. 
[76]  H. Arastoopour, D. Gidaspow, E. Abbasi, Computational Transport Phenomena of FluidParticle Systems, Springer, 2017. 
[77]  D. Ramkrishna, Population balances:Theory and applications to particulate systems in engineering, Academic Press, 2000. 
[78]  P. Lage, Comments on the "An analytical solution to the population balance equation with coalescence and breakagethe special case with constant number of particle" by D.P. Patil. and J.R.G. Andrews.[Chem. Eng. Sci. 53(3) 599601], Chem. Eng. Sci. 57(2002) 42534254. 
[79]  B. McCoy, G. Madras, Analytical solution for a population balance equation with aggregation and fragmentation, Chem. Eng. Sci. 58(2003) 30493051. 
[80]  G. Bhutani, P. BritoParada, Analytical solution for a threedimensional nonhomogeneous bivariate population balance equation:a special case, Int. J. Multiphase Flow 89(2017) 413416. 
[81]  M. Attarakih, A. Hasseine, H. Bart, On the solution of the PBE by orthogonal expansion of the maximum entropy functional, ComputAided, Chem. Eng. 40(2017) 20532058. 
[82]  S. Kumar, D. Ramkrishna, On the solution of population balance equations by discretizationⅢ. Nucleation, growth and aggregation of particles, Chem. Eng. Sci. 52(1997) 46594679. 
[83]  D. Jo, S. Revankar, Investigation of bubble breakup and coalescence in a packedbed reactorPart 1:A comparative study of bubble breakup and coalescence models, Int. J. Multiphase Flow 37(2011) 9951002. 
[84]  J. Morchain, M. Pigou, N. Lebaz, A population balance model for bioreactors combining interdivision time distributions and micromixing concepts, Biochem. Eng. J. 126(2017) 135145. 
[85]  H. Hulburt, S. Katz, Some problems in particle technology:A statistical mechanical formulation, Chem. Eng. Sci. 19(1964) 555574. 
[86]  J. Brock, J. Oates, Moment simulation of aerosol evaporation, J. Aerosol Sci. 18(1987) 5964. 
[87]  X. Luo, Y. Cao, H. Xie, F. Qin, Moment method for unsteady flows with heterogeneous condensation, Comput. Fluids 146(2017) 5158. 
[88]  M. Nicmanis, M. Hounslow, Finiteelement methods for steadystate population balance equations, AIChE J. 44(1998) 22582272. 
[89]  J. Solsvik, H. Jakobsen, Evaluation of weighted residual methods for the solution of a population balance model describing bubbly flows:The leastsquares, galerkin, tau, and orthogonal collocation methods, Ind. Eng. Chem. Res. 52(2013) 1598816013. 
[90]  J. Solsvik, P. Becker, N. SheibatOthman, H. Jakobsen, On the solution of the dynamic population balance model describing emulsification:Evaluation of weighted residual methods, Can. J. Chem. Eng. 92(2014) 250265. 
[91]  J. Solsvik, P. Becker, N. SheibatOthman, H. Jakobsen, Numerical solution of the drop population balance equation using weighted residual and finite volume methods, J. Dispers. Sci. Technol. 37(2016) 8088. 
[92]  M. Smith, T. Matsoukas, Constantnumber Monte Carlo simulation of population balances, Chem. Eng. Sci. 53(1998) 17771786. 
[93]  H. Zhao, A. Maisels, T. Matsoukas, C. Zheng, Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems, Powder Technol. 173(2007) 3850. 
[94]  Y. He, H. Zhao, H. Wang, C. Zheng, Differentially weighted direct simulation Monte Carlo method for particle collision in gassolid flows, Particuology 21(2015) 135145. 
[95]  Z. Xu, H. Zhao, C. Zheng, Fast Monte Carlo simulation for particle coagulation in population balance, J. Aerosol Sci. 74(2014) 1125. 
[96]  P. Fede, O. Simonin, P. Villedieu, MonteCarlo simulation of colliding particles or coalescing droplets transported by a turbulent flow in the framework of a joint fluidparticle pdf approach, Int. J. Multiphase Flow 74(2015) 165183. 
[97]  Z. Xu, H. Zhao, C. Zheng, Accelerating population balanceMonte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing, J. Comput. Phys. 281(2015) 844863. 
[98]  W. Zhang, C. You, Numerical approach to predict particle breakage in dense flows by coupling multiphase particleincell and Monte Carlo methods, Powder Technol. 283(2015) 128136. 
[99]  Z. Xu, H. Zhao, H. Zhao, CFDpopulation balance Monte Carlo simulation and numerical optimization for flame synthesis of TiO2 nanoparticles, Proc. Combust. Inst. 36(2017) 10991108. 
[1]  Tianpeng LiZhou, Jiajia Luo, Tiefeng Wang. Enhancement of acetylene and ethylene yields in partially decoupled oxidation of ethane by changing the composition of heat carrier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 7178. 
[2]  Zewen Chen, Yongjun Wu, Jian Wang, Peicheng Luo. Study on the solid–liquid suspension behavior in a tank stirred by the longshort blades impeller [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 7988. 
[3]  Liying Chen, Junheng Guo, Wenpeng Li, Shuchun Zhao, Wei Li, Jinli Zhang. A numerical study of mixing intensification for highly viscous fluids in multistage rotor–stator mixers [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 218230. 
[4]  Shidong Xue, Jingkun Han, Xi Xi, Junyi Zhao, Zhong Lan, Rongfu Wen, Xuehu Ma. Rapid velocity reduction and drift potential assessment of offnozzle pesticide droplets [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 243254. 
[5]  Zijun Li, Shubo Wang, Sai Yao, Xueke Wang, Weiwei Li, Tong Zhu, Xiaofeng Xie. Experimental and numerical study on improvement performance by wave parallel flow field in a proton exchange membrane fuel cell [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 90102. 
[6]  Yongjun Wu, Pan You, Peicheng Luo. Effect of pitched short blades on the flow characteristics in a stirred tank with longshort blades impeller [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 143152. 
[7]  Ning Liu, Xingping Liu, Fumin Wang, Feng Xin, Mingshuai Sun, Yi Zhai, Xubin Zhang. CFD simulation study of the effect of baffles on the fluidized bed for hydrogenation of silicon tetrachloride [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 219228. 
[8]  Narjes Hemati Alam, Eslam Kashi, Razieh Habibpour. Computational fluid dynamics simulation of gas dispersion in complex facilities using Kit Fox field experiments: Validation and statistical evaluation [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 412423. 
[9]  Huina Wang, Xiaoxia Duan, Xin Feng, ZaiSha Mao, Chao Yang. Effect of impeller type and scaleup on spatial distribution of shear rate in a stirred tank [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 351363. 
[10]  WenCong Chen, YaWei Fan, LiangLiang Zhang, BaoChang Sun, Yong Luo, HaiKui Zou, GuangWen Chu, JianFeng Chen. Computational fluid dynamic simulation of gasliquid flow in rotating packed bed: A review [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 85108. 
[11]  Wang Du, Liping Ma, Jing Yang, Wei Zhang, Ran Ao. Experimental and numerical simulation of lignite chemical looping gasification with phosphogypsum as oxygen carrier in a fluidized bed [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 197207. 
[12]  Qiang Zheng, Jingxuan Yang, Wenhao Lian, Baoping Zhang, Xueer Pan, Zhonglin Zhang, Xiaogang Hao, Guoqing Guan. Multifluid Eulerian simulation of binary particles mixing and gassolids contacting in high solidsflux downer reactor equipped with a lateral particle feeding nozzle [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 152162. 
[13]  Xifan Duan, Zhiguo Yuan, Youzhi Liu, Hangtian Li, Weizhou Jiao. Numerical simulation and experimental study of the characteristics of packing feature size on liquid flow in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 2231. 
[14]  Yanni Chi, Rui Zhang, Xianghai Meng, Jian Xu, Wei Du, Haiyan Liu, Zhichang Liu. Numerical simulation of twophase flow and droplet breakage of glycerinwater mixture and kerosene in the cyclone reactor [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 150159. 
[15]  Bay Van Tran, Son Ich Ngo, YoungIl Lim, Keon Bae, Dong Hyun Lee, KangSeok Go, NamSun Nho. Hydrodynamics of airkerosene bubble column under elevated pressure in homogeneous flow regime [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 190202. 
Viewed  
Full text 


Abstract 

