[1] J.C. Chen, Z. Fang, T. Qiu, Molecular reconstruction model based on structure oriented lumping and group contribution methods, Chin. J. Chem. Eng. 26(8) (2018) 1677-1683. [2] S.B. Kotsiantis, Supervised machine learning:a review of classification techniques, Informatica 31(2007) 249-268. [3] P. White, The power of the industrial internet:turning data into insight and action, J. Pet. Technol. 66(11) (2014) 90-93. [4] A. Chamkalani, A.H. Mohammadi, A. Eslamimanesh, et al., Diagnosis of asphaltene stability in crude oil through "two parameters" SVM model, Chem. Eng. Sci. 81(2012) 202-208. [5] A. Kamari, M. Sattari, A.H. Mohammadi, et al., Modeling of the vaporization enthalpies of petroleum fractions, Fluid Phase Equilib. 412(2016) 228-234. [6] A. Varamesh, A. Hemmati-Sarapardeh, B. Dabir, et al., Development of robust generalized models for estimating the normal boiling points of pure chemical compounds, J. Mol. Liq. 242(2017) 59-69. [7] Fangjun Kuang, Weihong Xu, Siyang Zhang, A novel hybrid KPCA and SVM with GA model for intrusion detection, Appl. Soft Comput. 18(2014) 178-184. [8] P.J. García Nieto et al., Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability, Reliab. Eng. Syst. Saf. 138(2015) 219-231. [9] Zhou Fang, Tong Qiu, Weiguo Zhou, Coupled simulation of recirculation zonal firebox model and detailed kinetic reactor model in an industrial ethylene cracking furnace, Chin. J. Chem. Eng. 25(8) (2017) 1091-1100. [10] A. Ba, E. Eckert, T. Vaněk, Procedures for the selection of real components to characterize, Chem. Pap. 57(1) (2003) 53-62. [11] Mohammad R. Riazi, Thomas E. Daubert, Analytical correlations interconvert distillation-curve types, Oil Gas J. 84(34) (1986) 51-57. [12] T.E. Daubert, Petroleum fraction distillation interconversions, Hydrocarb. Process. 73(1994) 9. [13] Angel Nedelchev et al. Boiling point distribution of crude oils based on TBP and ASTM D-86 distillation data, Pet. Coal 53(4) (2011) 275-290. [14] D.S. Stratiev et al., Evaluation of approaches for conversion of ASTM into TBP distillation data of oil fractions, Oil Gas Eur. Mag. 4(2014) 216-221. [15] Kexin Bi, Tong Qiu, A high-performance molecular reconstruction method with parameter initialization based on PCA, Computer Aided Chemical Engineering, vol. 44, Elsevier, 2018, pp. 2005-2010. [16] Wang Jianlin, Xuying Feng, Tao Yu, A geometric approach to support vector regression and its application to fermentation process fast modeling, Chin. J. Chem. Eng. 20(4) (2012) 715-722. [17] L.I.U. Han, Liu Ding, Research on natural gas short-term load forecasting based on support vector regression, in:5th World Congress on Intelliqent Control and Automation, IEEE, 2004, https://doi.org/10.1109/WCICA.2004.1343263. [18] Yuanbin Mo, Dezhao Chen, Shangxu Hu, Particle swarm optimization for multi-objective process system optimization problems, J. Chem. Eng. Chin. Univ. 22(1) (2008) 94. [19] Manoj Kumar et al., Genetic algorithm:Review and application, Int. J. Inf. Technol. Knowl. Manag. 2(2) (2010) 451-454. [20] Alec Banks, Jonathan Vincent, Chukwudi Anyakoha, A review of particle swarm optimization. Part I:background and development, Nat. Comput. 6(4) (2007) 467-484. [21] Alec Banks, Jonathan Vincent, Chukwudi Anyakoha, A review of particle swarm optimization. Part II:hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications, Nat. Comput. 7(1) (2008) 109-124. [22] Fabian Pedregosa et al., Scikit-learn:machine learning in python, J. Mach. Learn. Res. 12(Oct 2011) 2825-2830. [23] Mandavilli Srinivas, Lalit M. Patnaik, Adaptive probabilities of crossover and mutation in genetic algorithms, IEEE Trans. Syst. Man Cybern. 24(4) (1994) 656-667. [24] Asanga Ratnaweera, Saman K. Halgamuge, Harry C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evol. Comput. 8(3) (2004) 240-255. |