Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (6): 1374-1382.DOI: 10.1016/j.cjche.2019.01.012
• Special Issue: Separation Process Intensification of Chemical Engineering • Previous Articles Next Articles
Yuqi Huang, Yuanbin Zhang, Huabin Xing
Received:
2018-12-13
Revised:
2019-01-11
Online:
2019-08-19
Published:
2019-06-28
Contact:
Huabin Xing
Supported by:
Yuqi Huang, Yuanbin Zhang, Huabin Xing
通讯作者:
Huabin Xing
基金资助:
Yuqi Huang, Yuanbin Zhang, Huabin Xing. Separation of light hydrocarbons with ionic liquids: A review[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1374-1382.
Yuqi Huang, Yuanbin Zhang, Huabin Xing. Separation of light hydrocarbons with ionic liquids: A review[J]. 中国化学工程学报, 2019, 27(6): 1374-1382.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.01.012
[1] X.L. Cui, K.J. Chen, H.B. Xing, Q.W. Yang, R. Krishna, Z.B. Bao, H. Wu, W. Zhou, X.L. Dong, Y. Han, B. Li, Q.L. Ren, M.J. Zaworotko, B.L. Chen, Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene, Science 353(6295) (2016) 141-144. [2] P.Q. Liao, N.Y. Huang, W.X. Zhang, J.P. Zhang, X.M. Chen, Controlling guest conformation for efficient purification of butadiene, Science 356(6343) (2017) 1193-1196. [3] Z.B. Bao, G.G. Chang, X.B. Xing, R. Krishna, Q.L. Ren, B.L. Chen, Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures, Energy Environ. Sci. 9(2016) 3612-3641. [4] E.D. Bloch, W.L. Queen, R. Krishna, J.M. Zadrozny, C.M. Brown, J.R. Long, Hydrocarbon separations in a metal-organic framework with open iron(Ⅱ) coordination sites, Science 335(6076) (2012) 1606-1610. [5] R.B. Eldridge, Olefin/paraffin separation technology:A review, Ind. Eng. Chem. Res. 32(10) (1993) 2208-2212. [6] Z.G. Lei, C.Y. Li, B.H. Chen, Extractive distillation:A review, Sep. Purif. Rev. 32(2) (2003) 121-213. [7] X. Tian, X.P. Zhang, L. W, S.J. Zheng, L. Huang, S.J. Zhang, Multi-scale simulation of the 1,3-butadiene extraction separation process with an ionic liquid additive, Green Chem. 12(2010) 1263-1273. [8] X.J. Yang, Y. Xuan, P.K. Ouyang, Simulation of 1,3-butadiene production process by dimethylfomamide extractive distillation, Chin. J. Chem. Eng. 17(1) (2009) 27-35. [9] Y.F. Cao, L.W. Ge, X.Y. Dong, Q.W. Yang, Z.B. Bao, H.B. Xing, Q.L. Ren, Separation of hydrophobic compounds differing in a monounsaturated double bond using hydrophilic ionic liquid/water mixtures as extractants, ACS Sustain. Chem. Eng. 6(2) (2018) 2379-2385. [10] S.J. Zhang, N. Sun, X.Z. He, X.M. Lu, X.P. Zhang, Physical properties of ionic liquids:Database and evaluation, J. Phys. Chem. Ref. Data 35(4) (2006) 1475-1517. [11] H.B. Xing, X. Zhao, Q.W. Yang, B.G. Su, Z.B. Bao, Y.W. Yang, Q.L. Ren, Molecular dynamics simulation study on the absorption of ethylene and acetylene in ionic liquids, Ind. Eng. Chem. Res. 52(26) (2013) 9308-9316. [12] R. Hayes, G.G. Warr, R. Atkin, Structure and nanostructure in ionic liquids, Chem. Rev. 115(13) (2015) 6357-6426. [13] K. Huang, X.M. Zhang, Y.X. Li, Y.T. Wu, X.B. Hu, Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate-based ionic liquids, J. Membr. Sci. 471(2014) 227-236. [14] Z.G. Lei, C.N. Dai, B.H. Chen, Gas solubility in ionic liquids, Chem. Rev. 114(2) (2014) 1289-1326. [15] M. Moura, C.C. Santini, M.F. Costa Gomes, Gaseous hydrocarbon separations using functionalized ionic liquids, Oil Gas Sci. Technol. 71(23) (2016) 1-11. [16] X.P. Zhang, X.C. Zhang, H.F. Dong, Z.J. Zhao, S.J. Zhang, Y. Huang, Carbon capture with ionic liquids:Overview and progress, Energy Environ. Sci. 5(2012) 6668-6681. [17] S. Riaño, K. Binnemans, Extraction and separation of neodymium and dysprosium from used NdFeB magnets:An application of ionic liquids in solvent extraction towards the recycling of magnets, Green Chem. 17(2015) 2931-2942. [18] A. Rout, K. Binnemans, Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase, Dalton Trans. 43(2014) 3186-3195. [19] L. Qin, J.N. Zhang, H.Y. Cheng, L.F. Chen, Z.W. Qi, W.K. Yuan, Selection of imidazolium-based ionic liquids for vitamin E extraction from deodorizer distillate, ACS Sustain. Chem. Eng. 4(2) (2016) 583-590. [20] W. Jiang, W.S. Zhu, H.P. Li, X. Wang, S. Yin, Y.H. Chang, H.M. Li, Temperatureresponsive ionic liquid extraction and separation of the aromatic sulfur compounds, Fuel 140(2015) 590-596. [21] X.X. Liu, Q.W. Yang, Z.B. Bao, B.G. Su, Z.G. Zhang, Q.L. Ren, Y.W. Yang, H.B. Xing, Nonaqueous lyotropic ionic liquid crystals:preparation, characterization, and application in extraction, Chem. Eur. J. 21(25) (2015) 9150-9156. [22] R.S. Liang, Z.B. Bao, B.G. Su, H.B. Xing, Q.W. Yang, Y.W. Yang, Q.L. Ren, Feasibility of ionic liquids as extractants for selective separation of vitamin D3 and tachysterol3 by solvent extraction, J. Agric. Food Chem. 61(14) (2013) 3479-3487. [23] W.B. Jin, Q.W. Yang, Z.G. Zhang, Z.B. Bao, Q.L. Ren, Y.W. Yang, H.B. Xing, Selfassembly induced solubilization of drug-like molecules in nanostructured ionic liquids, Chem. Commun. 51(67) (2015) 13170-13173. [24] X. Zhao, H.B. Xing, Q.W. Yang, R.L. Li, B.G. Su, Z.B. Bao, Y.W. Yang, Q.L. Ren, Differential solubility of ethylene and acetylene in room-temperature ionic liquids:A theoretical study, J. Phys. Chem. B 116(13) (2012) 3944-3953. [25] C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Why is CO2 so soluble in imidazolium-based ionic liquids, J. Am. Chem. Soc. 126(16) (2004) 5300-5308. [26] H. Weingärtner, Understanding ionic liquids at the molecular level:Facts, problems, and controversies, Angew. Chem. Int. Ed. 47(4) (2008) 654-670. [27] Y. Zhang, X. Zhao, Q.W. Yang, Z.G. Zhang, Q.L. Ren, H.B. Xing, Long-chain carboxylate ionic liquids combining high solubility and low viscosity for light hydrocarbon separations, Ind. Eng. Chem. Res. 56(25) (2017) 7336-7344. [28] L. Moura, W. Darwich, C.C. Santini, M.F. Costa Gomes, Imidazolium-based ionic liquids with cyano groups for the selective absorption of ethane and ethylene, Chem. Eng. J. 280(2015) 755-762. [29] B.D. Green, R.A. O'Brien, J.H. Davis Jr., K.N. West, Ethane and ethylene solubility in an imidazolium-based lipidic ionic liquid, Ind. Eng. Chem. Res. 54(18) (2015) 5165-5171. [30] X.B. Xing, X. Zhao, R.L. Li, Q.W. Yang, B.G. Su, Z.B. Bao, Y.W. Yang, Q.L. Ren, Improved efficiency of ethylene/ethane separation using a symmetrical dual nitrilefunctionalized ionic liquid, ACS Sustainable Chem. Eng. 1(11) (2013) 1357-1363. [31] V. Mokrushin, D. Assenbaum, N. Paape, D. Gerhard, L. Mokrushina, P. Wasserscheid, W. Arlt, H. Kistenmacher, S. Neuendorf, V. Göke, Ionic liquids for propene-propane separation, Chem. Eng. Technol. 33(1) (2010) 63-73. [32] X. Zhao, Q.W. Yang, D. Xu, Z.B. Bao, Y. Zhang, B.G. Su, Q.L. Ren, H.B. Xing, Design and screening of ionic liquids for C2H2/C2H4 separation by COSMO-RS and experiments, AIChE J. 61(6) (2015) 2016-2027. [33] J. Palgunadi, H.K. Kim, J.M. Lee, S. Jung, Ionic liquids for acetylene and ethylene separation:material selection and solubility investigation, Chem. Eng. Process. 49(2) (2010) 192-198. [34] J.W. Wang, D.Y. Xie, Z.G. Zhang, Q.W. Yang, H.B. Xing, Y.W. Yang, Q.L. Ren, Z.B. Bao, Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metal-organic framework, AIChE J. 63(6) (2017) 2165-2175. [35] J.L. Anthony, J.L. Anderson, E.J. Maginn, J.F. Brennecke, Anion effects on gas solubility in ionic liquids, J. Phys. Chem. B 109(13) (2005) 6366-6374. [36] C.M. Wang, X.Y. Luo, H.M. Luo, D.E. Jiang, H.R. Li, S. Dai, Tuning the basicity of ionic liquids for equimolar CO2 capture, Angew. Chem. Int. Ed. 50(21) (2011) 4918-4922. [37] W.J. Li, Z.F. Zhang, B.X. Han, S.Q. Hu, J.L. Song, Y. Xie, X.S. Zhou, Switching the basicity of ionic liquids by CO2, Green Chem. 10(11) (2008) 1142-1145. [38] J. Palgunadi, S.Y. Hong, J.K. Lee, H. Lee, S.D. Lee, M. Cheong, H.S. Kim, Correlation between hydrogen bond basicity and acetylene solubility in room temperature ionic liquids, J. Phys. Chem. B 115(5) (2011) 1067-1074. [39] M.S. Shannon, J.M. Tedstone, S.P.O. Danielsen, M.S. Hindman, A.C. Irvin, J.E. Bara, Free volume as the basis of gas solubility and selectivity in imidazolium-based ionic liquids, Ind. Eng. Chem. Res. 51(15) (2012) 5565-5576. [40] Z.J. Chen, J.M. Lee, Free volume model for the unexpected effect of C2-methylation on the properties of imidazolium ionic liquids, J. Phys. Chem. B 118(10) (2014) 2712-2718. [41] Y. Wang, T.T. Tsotsis, K. Jessen, Competitive sorption of methane/ethane mixtures on shale:Measurements and modeling, Ind. Eng. Chem. Res. 54(48) (2015) 12187-12195. [42] R.D. Vidic, S.L. Brantley, J.M. Vandenbossche, D. Yoxtheimer, J.D. Abad, Impact of shale gas development on regional water quality, Science 340(6134) (2013) 1235009. [43] A. Finotello, J.E. Bara, D. Camper, R.D. Noble, Room-temperature ionic liquids:temperature dependence of gas solubility selectivity, Ind. Eng. Chem. Res. 47(10) (2008) 3453-3459. [44] M.F. Costa Gomes, Low-pressure solubility and thermodynamics of solvation of carbon dioxide, ethane, and hydrogen in 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl)amide between temperatures of 283 K and 343 K, J. Chem. Eng. Data 52(2) (2007) 472-475. [45] Y.S. Kim, J.H. Jang, B.D. Lim, J.W. Kang, C.S. Lee, Solubility of mixed gases containing carbon dioxide in ionic liquids:Measurements and predictions, Fluid Phase Equilib. 256(1-2) (2007) 70-74. [46] S. Raeissi, C.J. Peters, High pressure phase behaviour of methane in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, Fluid Phase Equilib. 294(1-2) (2010) 67-71. [47] B.C. Lee, S.L. Outcalt, Solubilities of gases in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, J. Chem. Eng. Data 51(3) (2006) 892-897. [48] X.Y. Liu, W. Afzal, J.M. Prausnitz, Solubilities of small hydrocarbons in tetrabutylphosphonium bis(2,4,4-trimethylpentyl) phosphinate and in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, Ind. Eng. Chem. Res. 52(42) (2013) 14975-14978. [49] X.Y. Liu, W. Afzal, G.R. Yu, M.G. He, J.M. Prausnitz, High solubilities of small hydrocarbons in trihexyl tetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate, J. Phys. Chem. B 117(36) (2013) 10534-10539. [50] X.L. Liu, E. Ruiz, W. Afzal, V. Ferro, J. Palomar, J.M. Prausnitz, High solubilities for methane, ethane, ethylene, and propane in trimethyloctylphosphonium bis(2,4,4-trimethylpentyl) phosphinate ([P8111] [TMPP]), Ind. Eng. Chem. Res. 53(1) (2014) 363-368. [51] M. Althuluth, M.T. Mota-Martinez, A. Berrouk, M.C. Kroon, C.J. Peters, Removal of small hydrocarbons(ethane,propane,butane)fromnaturalgasstreamsusingtheionicliquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, J. Supercrit. Fluids 90(2014) 65-72. [52] J. Jacquemin, M.F. Costa Gomes, P. Husson, V. Majer, Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283K and 343K and at pressures close to atmospheric, J. Chem. Thermodyn. 38(4) (2006) 490-502. [53] D. Camper, C. Becker, C. Koval, R. Noble, Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory, Ind. Eng. Chem. Res. 44(6) (2005) 1928-1933. [54] X.L. Liu, W. Afzal, J.M. Prausnitz, Unusual trend of viscosities and densities for four ionic liquids containing a tetraalkyl phosphonium cation and the anion bis(2,4,4-trimethylpentyl) phosphinate, J. Chem. Thermodyn. 70(2014) 122-126. [55] D. Camper, C. Becker, C. Koval, R. Noble, Diffusion and solubility measurements in room temperature ionic liquids, Ind. Eng. Chem. Res. 45(1) (2006) 445-450. [56] J.L. Anthony, E.J. Maginn, J.F. Brennecke, Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate, J. Phys. Chem. B 106(29) (2002) 7315-7320. [57] F. Agel, F. Pitsch, F.F. Krull, P. Schulz, M. Wessling, T. Melin, P. Wasserscheid, Ionic liquid silver salt complexes for propene/propane separation, Phys. Chem. Chem. Phys. 13(2) (2011) 725-731. [58] A. Ortiz, L.M. Galán, D. Gorri, A.B. Haan, I. Ortiz, Reactive ionic liquid media for the separation of propylene/propane gaseous mixtures, Ind. Eng. Chem. Res. 49(16) (2010) 7227-7233. [59] L. Moura, M. Mishra, V. Bernales, P. Fuentealba, A.A.H. Padua, C.C. Santini, M.F. Costa Gomes, Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids, J. Phys. Chem. B 117(24) (2013) 7416-7425. [60] J.L. Anderson, J.K. Dixon, J.F. Brennecke, Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide:comparison to other ionic liquids, Acc. Chem. Res. 40(11) (2007) 1208-1216. [61] R.L. Li, H.B. Xing, Q.W. Yang, X. Zhao, B.G. Su, Z.B. Bao, Y.W. Yang, Q.L. Ren, Selective extraction of 1-hexene against n-hexane in ionic liquids with or without silver salt, Ind. Eng. Chem. Res. 51(25) (2012) 8588-8597. [62] J. Zhang, Q.H. Zhang, B.T. Qiao, Y.Q. Deng, Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography, J. Chem. Eng. Data 52(6) (2007) 2277-2283. [63] U. Domańska, M. Królikowska, W.E. Acree Jr., G.A. Baker, Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, J. Chem. Thermodyn. 43(7) (2011) 1050-1057. [64] M. Fallanza, A. Ortiz, D. Gorri, I. Ortiz, Propylene and propane solubility in imidazolium, pyridinium, and tetralkylammonium based ionic liquids containing a silver salt, J. Chem. Eng. Data 58(8) (2013) 2147-2153. [65] M. Fallanza, M. González-Miquel, E. Ruiz, A. Ortiz, D. Gorri, J. Palomar, I. Ortiz, Screening of RTILs for propane/propylene separation using COSMO-RS methodology, Chem. Eng. J. 220(2013) 284-293. [66] A. Ortiz, A. Ruiz, D. Gorri, I. Ortiz, Room temperature ionic liquid with silver salt as efficient reaction media for propylene/propane separation:absorption equilibrium, Sep. Purif. Technol. 63(2) (2008) 311-318. [67] E. Yashima, T. Matsushima, Y. Okamoto, Chirality assignment of amines and amino alcohols based on circular dichroism induced by helix formation of a stereoregular poly((4-carboxyphenyl)acetylene) through acid-base complexation, J. Am. Chem. Soc. 119(27) (1997) 6345-6359. [68] F. Silvestri, A. Marrocchi, Acetylene-based materials in organic photovoltaics, Int. J. Mol. Sci. 11(4) (2010) 1471-1508. [69] S. Jung, J. Palgunadi, J.H. Kim, H. Lee, B.S. Ahn, M. Cheong, H.S. Kim, Highly efficient metal-free membranes for the separation of acetylene/olefin mixtures:pyrrolidinium-based ionic liquids as acetylene transport carriers, J. Membr. Sci. 354(1-2) (2010) 63-67. [70] Y. Fukaya, K. Hayashi, M. Wada, H. Ohno, Cellulose dissolution with polar ionic liquids under mild conditions:Required factors for anions, Green Chem. 10(1) (2008) 44-46. [71] S. Coleman, R. Byrne, S. Minkovska, D. Diamond, Thermal reversion of spirooxazine in ionic liquids containing the[NTf2]-anion, Phys. Chem. Chem. Phys. 11(27) (2009) 5608-5614. [72] H. Ohno, Y. Fukaya, Task specific ionic liquids for cellulose technology, Chem. Lett. 38(1) (2009) 2-7. [73] C.G. Adam, M.V. Bravo, P.M.E. Mancini, G.G. Fortunato, Solvatochromic dipolarity micro-sensor behaviour in binary solvent systems of the (water + ionic liquid) type:Application of preferential solvation model and linear solvation energy relationships, J. Phys. Org. Chem. 27(11) (2014) 841-849. [74] M.J. Kamlet, J.L.M. Abboud, M.H. Abraham, R.W. Taft, A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation, J. Org. Chem. 48(1983) 2877-2887. [75] D. Xu, Q.W. Yang, B.G. Su, Z.B. Bao, Q.L. Ren, H.B. Xing, Enhancing the basicity of ionic liquids by tuning the cation-anion interaction strength and via the anion-tethered strategy, J. Phys. Chem. B 118(4) (2014) 1071-1079. [76] Q.W. Yang, X. Dan, J.Z. Zhang, Y.M. Yao, Z.G. Zhang, C. Qian, Q.L. Ren, H.B. Xing, Longchain fatty acid-based Phosphonium ionic liquids with strong hydrogen-bond basicity and good lipophilicity:synthesis, characterization, and application in extraction, ACS Sustain. Chem. Eng. 3(2) (2015) 309-316. [77] D. Morgan, L. Ferguson, P. Scovazzo, Diffusivities of gases in room-temperature ionic liquids:data and correlations obtained using a lag-time technique, Ind. Eng. Chem. Res. 44(13) (2005) 4815-4823. [78] L. Ferguson, P. Scovazzo, Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids:Data and correlations, Ind. Eng. Chem. Res. 46(4) (2007) 1369-1374. [79] P.K. Kilaru, R.A. Condemarin, P. Scovazzo, Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammoniumbased room-temperature ionic liquids. Part 1. Using surface tension, Ind. Eng. Chem. Res. 47(3) (2008) 900-909. [80] P.K. Kilaru, P. Scovazzo, Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based roomtemperature ionic liquids. Part 2. Using activation energy of viscosity, Ind. Eng. Chem. Res. 47(3) (2008) 910-919. [81] R. Condemarin, P. Scovazzo, Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data, Chem. Eng. J. 147(1) (2009) 51-57. [82] Y.Q. Huang, T. Ke, Y.Q. Ke, Q.L. Ren, Q.W. Yang, H.B. Xing, Carboxylate ionic liquids with large free volume and strong hydrogen bonding basicity for efficient separation of butadiene and n-Butene, Ind. Eng. Chem. Res. 57(40) (2018) 13519-13527. [83] L.A. Blanchard, Z.Y. Gu, J.F. Brennecke, High-pressure phase behavior of ionic liquid/CO2 systems, J. Phys. Chem. B 105(12) (2001) 2437-2444. [84] B.R. Prasad, S. Senapati, Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations, J. Phys. Chem. B 113(14) (2009) 4739-4743. [85] Z.J. Chen, T. Xue, J.M. Lee, What causes the low viscosity of ether-functionalized ionic liquids? Its dependence on the increase of free volume, RSC Adv. 2(28) (2012) 10564-10574. [86] Y.F. Hu, Z.C. Liu, C.M. Xu, X.M. Zhang, The molecular characteristics dominating the solubility of gases in ionic liquids, Chem. Soc. Rev. 40(2011) 3802-3823. |
[1] | Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 1-10. |
[2] | Jing Gao, Zhijun Ma, Fuli Liu, Cunxin Chen. Synthesis of carbon-coated cobalt ferrite core–shell structure composite: A method for enhancing electromagnetic wave absorption properties by adjusting impedance matching [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 206-217. |
[3] | Yaran Yin, Xianming Zhang, Chunying Zhu, Taotao Fu, Youguang Ma. Formation characteristics of Taylor bubbles in a T-junction microchannel with chemical absorption [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 214-222. |
[4] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[5] | Haoyu Yao, Dongxia Yan, Xingmei Lu, Qing Zhou, Yinan Bao, Junli Xu. Solubility determination and thermodynamic modeling of bis-2-hydroxyethyl terephthalate (BHET) in different solvents [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 294-300. |
[6] | Fanfan Shen, Lizhen Chen, Pengbao Lian, Jianlong Wang, Duanlin Cao. Solubility and metastable zone width measurement of 2,4-diaminobenzenesulfonic acid in (H2SO4 + H2O) system [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 384-391. |
[7] | Liwang Wang, Hualin Wang, Liang Ma, Zhanghuang Yang, Erwen Chen. Gas cyclone-liquid jet absorption separator used for treatment of tail gas containing HCl in titanium dioxide industry [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 435-446. |
[8] | Xi Wu, Shuaishuai Yang, Shiming Xu, Xinjie Zhang, Yujie Ren. Measurement and correlation of the solubility of sodium acetate in eight pure and binary solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 474-484. |
[9] | Alireza Afsharpour. A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 521-527. |
[10] | Haiyan Jiang, Lu Bai, Bingbing Yang, Shaojuan Zeng, Haifeng Dong, Xiangping Zhang. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176. |
[11] | Xiaomeng Zhao, Xingyu Li, Changjun Liu, Shan Zhong, Houfang Lu, Hairong Yue, Kui Ma, Lei Song, Siyang Tang, Bin Liang. The quasi-activity coefficients of non-electrolytes in aqueous solution with organic ions and its application on the phase splitting behaviors prediction for CO2 absorption [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 316-323. |
[12] | Pengtao Guo, Miao Chang, Tongan Yan, Yuxiao Li, Dahuan Liu. A pillared-layer metal-organic framework for efficient separation of C3H8/C2H6/CH4 in natural gas [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 10-16. |
[13] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 64-72. |
[14] | Shuang Xu, Ru-Shuai Liu, Meng-Yao Zhang, An-Hui Lu. Designed synthesis of porous carbons for the separation of light hydrocarbons [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 130-150. |
[15] | Yu Dong, Tiantian Ping, Shufeng Shen. Solubility of CO2 in nonaqueous system of 2-(butylamino)ethanol with 2-butoxyethanol: Experimental data and model representation [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 441-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||