[1] A.J. Burgraff, L. Cot, Fundamentals of Inorganic Membrane Science and Technology, Elsevier, 1996. [2] L. Cot, C. Guizard, A. Julbe, A. L, Preparation and Application of Inorganic Membranes, Springer, Dordrecht, 1994. [3] S.M. Samaei, S. Gato-Trinidad, A. Altaee, The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters-A review, Sep. Purif. Technol. 200(2018) 198-220. [4] J.Y.S. Lin, L. Winnubst, Letter to the editor, J. Membr. Sci. (2017) 542. [5] R.J.R. Uhlhorn, M.H.B.J. Huis In't Veld, K. Keizer, A.J. Burggraaf, High permselectivities of microporous silica-modified γ-alumina membranes, J. Mater. Sci. Lett. 8(1989) 1135-1138. [6] R.M. de Vos, H. Verweij, High-selectivity, high-flux silica membranes for gas separation, Science 279(1998) 1710-1711. [7] M. ten Hove, M.W.J. Luiten-Olieman, C. Huiskes, A. Nijmeijer, L. Winnubst, Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes, Sep. Purif. Technol. 189(2017) 48-53. [8] M.C. Duke, J.C.D. da Costa, D.D. Do, P.G. Gray, G.Q. Lu, Hydrothermally robust molecular sieve silica for wet gas separation, Adv. Funct. Mater. 16(2006) 1215-1220. [9] H.L. Castricum, A. Sah, R. Kreiter, D.H. Blank, J.F. Vente, J.E. ten Elshof, Hybrid ceramic nanosieves:Stabilizing nanopores with organic links, Chem. Commun. (Camb) (2008) 1103-1105. [10] M. Kanezashi, K. Yada, T. Yoshioka, T. Tsuru, Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability, J. Am. Chem. Soc. 131(2009) 414-415. [11] J. Wang, M. Kanezashi, T. Yoshioka, T. Tsuru, Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes, J. Membr. Sci. 415-416(2012) 810-815. [12] A.P. Dral, K. Tempelman, E.J. Kappert, L. Winnubst, N.E. Benes, J.E. ten Elshof, Longterm flexibility-based structural evolution and condensation in microporous organosilica membranes for gas separation, J. Mater. Chem. A 5(2017) 1268-1281. [13] K. Yamamoto, J. Ohshita, T. Mizumo, M. Kanezashi, T. Tsuru, Synthesis of organically bridged trialkoxysilanes bearing acetoxymethyl groups and applications to reverse osmosis membranes, Appl. Organomet. Chem. 31(2017). [14] H. Qi, Preparation of composite microporous silica membranes using TEOS and 1, 2-bis(triethoxysilyl)ethane as precursors for gas separation, Chin. J. Chem. Eng. 19(2011) 404-409. [15] H. Qi, J. Han, N. Xu, H.J. Bouwmeester, Hybrid organic-inorganic microporous membranes with high hydrothermal stability for the separation of carbon dioxide, ChemSusChem 3(2010) 1375-1378. [16] K.-S. Chang, T. Yoshioka, M. Kanezashi, T. Tsuru, K.-L. Tung, Molecular simulation of micro-structures and gas diffusion behavior of organic-inorganic hybrid amorphous silica membranes, J. Membr. Sci. 381(2011) 90-101. [17] H.L. Castricum, G.G. Paradis, M.C. Mittelmeijer-Hazeleger, R. Kreiter, J.F. Vente, J.E. ten Elshof, Tailoring the separation behavior of hybrid organosilica membranes by adjusting the structure of the organic bridging group, Adv. Funct. Mater. 21(2011) 2319-2329. [18] Y.S. Lin, Microporous and dense inorganic membranes:Current status and prospective, Sep. Purif. Technol. 25(2001) 39-55. [19] H. Song, Y. Wei, C. Wang, S. Zhao, H. Qi, Tuning sol size to optimize organosilica membranes for gas separation, Chin. J. Chem. Eng. 26(2018) 53-59. [20] H. Qi, J. Han, N. Xu, Effect of calcination temperature on carbon dioxide separation properties of a novel microporous hybrid silica membrane, J. Membr. Sci. 382(2011) 231-237. [21] E.J. Kappert, H.J. Bouwmeester, N.E. Benes, A. Nijmeijer, Kinetic analysis of the thermal processing of silica and organosilica, J. Phys. Chem. B 118(2014) 5270-5277. [22] M. ten Hove, A. Nijmeijer, L. Winnubst, Facile synthesis of zirconia doped hybrid organic inorganic silica membranes, Sep. Purif. Technol. 147(2015) 372-378. [23] H.L. Castricum, H.F. Qureshi, A. Nijmeijer, L. Winnubst, Hybrid silica membranes with enhanced hydrogen and CO2 separation properties, J. Membr. Sci. 488(2015) 121-128. [24] H.F. Qureshi, A. Nijmeijer, L. Winnubst, Influence of sol-gel process parameters on the micro-structure and performance of hybrid silica membranes, J. Membr. Sci. 446(2013) 19-25. [25] H.F. Qureshi, R. Besselink, J.E. ten Elshof, A. Nijmeijer, L. Winnubst, Doped microporous hybrid silica membranes for gas separation, J. Sol-Gel Sci. Technol. 75(2015) 180-188. [26] H. Qi, H. Chen, L. Li, G. Zhu, N. Xu, Effect of Nb content on hydrothermal stability of a novel ethylene-bridged silsesquioxane molecular sieving membrane for H2/CO2 separation, J. Membr. Sci. 421-422(2012) 190-200. [27] H. Song, S. Zhao, J. Chen, H. Qi, Hydrothermally stable Zr-doped organosilica membranes for H2/CO2 separation, Microporous Mesoporous Mater. 224(2016) 277-284. [28] P. Karakiliç, C. Huiskes, M.W.J. Luiten-Olieman, A. Nijmeijer, L. Winnubst, Sol-gel processed magnesium-doped silica membranes with improved H2/CO2 separation, J. Membr. Sci. 543(2017) 195-201. [29] David Uhlmann, Bradley P. Ladewig Shaomin, João C. Diniz da Costa, Cobalt-doped silica membranes for gas separation, J. Membr. Sci. 326(2009) 316-321. [30] M. Kanezashi, D. Fuchigami, T. Yoshioka, T. Tsuru, Control of Pd dispersion in sol-gel-derived amorphous silica membranes for hydrogen separation at high temperatures, J. Membr. Sci. 439(2013) 78-86. [31] B. Ballinger, J. Motuzas, S. Smart, J.C.D. da Costa, Palladium cobalt binary doping of molecular sieving silica membranes, J. Membr. Sci. 451(2014) 185-191. [32] H. Song, S. Zhao, J. Lei, C. Wang, H. Qi, Pd-doped organosilica membrane with enhanced gas permeability and hydrothermal stability for gas separation, J. Mater. Sci. 51(2016) 6275-6286. [33] J. Lei, H. Song, Y. Wei, S. Zhao, H. Qi, A novel strategy to enhance hydrothermal stability of Pd-doped organosilica membrane for hydrogen separation, Microporous Mesoporous Mater. 253(2017) 55-63. [34] Y. Chua, C.X.C. Lin, F. Kleitz, S. Smart, Mesoporous organosilica membranes:Effects of pore geometry and calcination conditions on the membrane distillation performance for desalination, Desalination 370(2015) 53-62. [35] H.R. Lee, T. Shibata, M. Kanezashi, T. Mizumo, J. Ohshita, T. Tsuru, Pore-size-controlled silica membranes with disiloxane alkoxides for gas separation, J. Membr. Sci. 383(2011) 152-158. [36] D.-T. Phan, G.-S. Chung, Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites, Int. J. Hydrog. Energy 39(2014) 620-629. [37] Y. Jing, F. Wangqing, B. Carl-Martin, Effect of calcination atmosphere on microstructure and H2/CO2 separation of palladium-doped silica membranes, Sep. Purif. Technol. 210(2019) 659-669. [38] K. Yamamoto, J. Ohshita, T. Mizumo, T. Tsuru, Efficient synthesis of SiOC glasses from ethane, ethylene, and acetylene-bridged polysilsesquioxanes, J. Non-Cryst. Solids 408(2015) 137-141. [39] M. Kanezashi, K. Yada, T. Yoshioka, T. Tsuru, Organic-inorganic hybrid silica membranes with controlled silica network size:Preparation and gas permeation characteristics, J. Membr. Sci. 348(2010) 310-318. [40] M.M.Wei,L.Zhang,Y.Q.Xiong,J.H.Li,P.A.Peng,Nanopore structure characterization for organic-rich shale using the non-local-density functional theory by a combination of N2 and CO2 adsorption, Microporous Mesoporous Mater. 227(2016) 88-94. [41] T. Tsuru, Nano/subnano-tuning of porous ceramic membranes for molecular separation, J. Sol-Gel Sci. Technol. 46(2008) 349-361. [42] H.Song,Y.Wei,H.Qi,Tailoring pore structures to improve the permselectivity of organosilica membranes by tuning calcination parameters, J. Mater. Chem. A 5(2017) 24657-24666. [43] V. Boffa, D. Blank, J. Tenelshof, Hydrothermal stability of microporous silica and niobia-silica membranes, J. Membr. Sci. 319(2008) 256-263. [44] T. Yoshioka, E. Nakanishi, T. Tsuru, M. Asaeda, Experimental studies of gas permeation through microporous silica membranes, AIChE J. 47(2001) 2052-2063. [45] H. Nagasawa, T. Niimi, M. Kanezashi, T. Yoshioka, T. Tsuru, Modified gas-translation model for prediction of gas permeation through microporous organosilica membranes, AIChE J. 60(2014) 4199-4210. |