Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (11): 2238-2254.DOI: 10.1016/j.cjche.2018.07.010
• Special issue of Carbon Capture, Utilisation and Storage • Previous Articles Next Articles
Yang Han, W. S. Winston Ho
Received:
2018-05-31
Revised:
2018-07-14
Online:
2018-12-10
Published:
2018-11-28
Contact:
W. S. Winston Ho
Yang Han, W. S. Winston Ho
通讯作者:
W. S. Winston Ho
Yang Han, W. S. Winston Ho. Recent advances in polymeric membranes for CO2 capture[J]. Chin.J.Chem.Eng., 2018, 26(11): 2238-2254.
Yang Han, W. S. Winston Ho. Recent advances in polymeric membranes for CO2 capture[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2238-2254.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.07.010
[1] B. Metz, O. Davidson, H. De Coninck, M. Loos, L. Meyer, IPCC special report on carbon dioxide capture and storage, Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change, IPCC, Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2005.[2] K. Ramasubramanian, Y. Zhao, W.S.W. Ho, CO2 capture and H2 purification:Prospects for CO2-selective membrane processes, AICHE J. 59(4) (2013) 1033-1045.[3] W.S.W. Ho, K.K. Sirkar, Membrane Handbook, Chapman & Hall, New York, 1992, Kluwer Academic Publishers, Boston, reprint edition, 2001.[4] J. Black, Cost and Performance Baseline for Fossil Energy Plants Volume 1:Bituminous Coal and Natural Gas to Electricity Final Report, 2nd ed. National Energy Technology Laboratory, November, 2010.[5] L. Zhao, E. Riensche, L. Blum, D. Stolten, How gas separation membrane competes with chemical absorption in postcombustion capture, Energy Procedia 4(2011) 629-636.[6] L. Zhao, E. Riensche, L. Blum, D. Stolten, Multi-stage gas separation membrane processes used in post-combustion capture:Energetic and economic analyses, J. Membr. Sci. 359(1) (2010) 160-172.[7] T. Fout, A. Zoelle, D. Keairns, M. Turner, M. Woods, N. Kuehn, V. Shah, V. Chou, L. Pinkerton, J. Black, Cost and Performance Baseline for Fossil Energy Plants Volume 1b:Bituminous Coal (IGCC) to Electricity Revision 2b-Year Dollar Update, United States Departmeant of Energy, Washington, DC, USA, 2015.[8] J.D. Wind, D.R. Paul, W.J. Koros, Natural gas permeation in polyimide membranes, J. Membr. Sci. 228(2) (2004) 227-236.[9] S. Harms, K. Rätzke, F. Faupel, N. Chaukura, P. Budd, W. Egger, L. Ravelli, Aging and free volume in a polymer of intrinsic microporosity (PIM-1), J. Adhes. 88(7) (2012) 608-619.[10] L. Robeson, B. Freeman, D. Paul, B. Rowe, An empirical correlation of gas permeability and permselectivity in polymers and its theoretical basis, J. Membr. Sci. 341(1-2) (2009) 178-185.[11] B.D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules 32(2) (1999) 375-380.[12] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62(2) (1991) 165-185.[13] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(1) (2008) 390-400.[14] S. Janakiram, M. Ahmadi, Z. Dai, L. Ansaloni, L. Deng, Performance of nanocomposite membranes containing 0D to 2D nanofillers for CO2 separation:A review, Membranes 8(2) (2018) 24.[15] M. Wang, Z. Wang, S. Zhao, J. Wang, S. Wang, Recent advances on mixed matrix membranes for CO2 separation, Chin. J. Chem. Eng. 25(2017) 1581-1597.[16] J. Wijmans, R. Baker, The solution-diffusion model:A review, J. Membr. Sci. 107(1) (1995) 1-21.[17] V.T. Stannett, Simple gases, in:J. Crank, G.S. Park (Eds.), Diffusion in Polymers, Academic Press, New York, New York 1968, pp. 41-73.[18] G. Dong, H. Li, V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A 1(15) (2013) 4610-4630.[19] V. Bondar, B. Freeman, I. Pinnau, Gas transport properties of poly (ether-b-amide) segmented block copolymers, J. Polym. Sci. B Polym. Phys. 38(15) (2000) 2051-2062.[20] J.D. Goddard, J.S. Schultz, S.R. Suchdeo, Facilitated transport via carrier-mediated diffusion in membranes:Part Ⅱ. Mathematical aspects and analyses, AIChE J. 20(4) (1974) 625-645.[21] J.H. Meldon, P. Stroeve, C.E. Gregoire, Facilitated transport of carbon dioxide:A review, Chem. Eng. Commun. 16(1-6) (1982) 263-300.[22] P. Danckwerts, The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34(4) (1979) 443-446.[23] P.V. Kortunov, M. Siskin, L.S. Baugh, D.C. Calabro, In situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in aqueous systems:New insights on carbon capture reaction pathways, Energy Fuel 29(9) (2015) 5919-5939.[24] Y. Zhao, W.S.W. Ho, Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport, J. Membr. Sci. 415(2012) 132-138.[25] E. Cussler, R. Aris, A. Bhown, On the limits of facilitated diffusion, J. Membr. Sci. 43(2) (1989) 149-164.[26] F. Rindfleisch, T.P. DiNoia, M.A. McHugh, Solubility of polymers and copolymers in supercritical CO2, J. Phys. Chem. 100(38) (1996) 15581-15587.[27] H. Lin, B.D. Freeman, Materials selection guidelines for membranes that remove CO2 from gas mixtures, J. Mol. Struct. 739(1-3) (2005) 57-74.[28] L. Zhu, B.R. Mimnaugh, Q. Ge, R.P. Quirk, S.Z. Cheng, E.L. Thomas, B. Lotz, B.S. Hsiao, F. Yeh, L. Liu, Hard and soft confinement effects on polymer crystallization in microphase separated cylinder-forming PEO-b-PS/PS blends, Polymer 42(21) (2001) 9121-9131.[29] W. Yave, A. Car, S.S. Funari, S.P. Nunes, K.-V. Peinemann, CO2-philic polymer membrane with extremely high separation performance, Macromolecules 43(1) (2009) 326-333.[30] S.H. Ahn, S.J. Kim, D.K. Roh, H.-K. Lee, B. Jung, J.H. Kim, Controlling gas permeability of a graft copolymer membrane using solvent vapor treatment, Macromol. Res. 22(2) (2014) 160-164.[31] S.R. Reijerkerk, A.C. IJzer, K. Nijmeijer, A. Arun, R.J. Gaymans, M. Wessling, Subambient temperature CO2 and light gas permeation through segmented block copolymers with tailored soft phase, ACS Appl. Mater. Interfaces 2(2) (2010) 551-560.[32] S. Luo, K.A. Stevens, J.S. Park, J.D. Moon, Q. Liu, B.D. Freeman, R. Guo, Highly CO2-selective gas separation membranes based on segmented copolymers of poly(ethylene oxide) reinforced with pentiptycene-containing polyimide hard segments, ACS Appl. Mater. Interfaces 8(3) (2016) 2306-2317.[33] J. Xia, S. Liu, T.-S. Chung, Effect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes, Macromolecules 44(19) (2011) 7727-7736.[34] W. Yave, H. Huth, A. Car, C. Schick, Peculiarity of a CO2-philic block copolymer confined in thin films with constrained thickness:"A super membrane for CO2-capture", Energy Environ. Sci. 4(11) (2011) 4656-4661.[35] B. Xue, X. Li, L. Gao, M. Gao, Y. Wang, L. Jiang, CO2-selective free-standing membrane by self-assembly of a UV-crosslinkable diblock copolymer, J. Mater. Chem. 22(21) (2012) 10918-10923.[36] S. Feng, J. Ren, K. Hua, H. Li, X. Ren, M. Deng, Poly(amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation, Sep. Purif. Technol. 116(2013) 25-34.[37] W. Yave, A. Car, K.-V. Peinemann, Nanostructured membrane material designed for carbon dioxide separation, J. Membr. Sci. 350(1-2) (2010) 124-129.[38] S.R. Reijerkerk, M. Wessling, K. Nijmeijer, Pushing the limits of block copolymer membranes for CO2 separation, J. Membr. Sci. 378(1-2) (2011) 479-484.[39] Y. Chen, B. Wang, L. Zhao, P. Dutta, W.S.W. Ho, New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas, J. Membr. Sci. 495(2015) 415-423.[40] J.M. Scofield, P.A. Gurr, J. Kim, Q. Fu, S.E. Kentish, G.G. Qiao, Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes, J. Membr. Sci. 499(2016) 191-200.[41] H. Lin, E. Van Wagner, J.S. Swinnea, B.D. Freeman, S.J. Pas, A.J. Hill, S. Kalakkunnath, D.S. Kalika, Transport and structural characteristics of crosslinked poly(ethylene oxide) rubbers, J. Membr. Sci. 276(1-2) (2006) 145-161.[42] H. Lin, E. Van Wagner, R. Raharjo, B.D. Freeman, I. Roman, High-performance polymer membranes for natural-gas sweetening, Adv. Mater. 18(1) (2006) 39-44.[43] V.A. Kusuma, B.D. Freeman, S.L. Smith, A.L. Heilman, D.S. Kalika, Influence of TRISbased co-monomer on structure and gas transport properties of cross-linked poly (ethylene oxide), J. Membr. Sci. 359(1-2) (2010) 25-36.[44] I. Taniguchi, T. Kai, S. Duan, S. Kazama, H. Jinnai, A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes, J. Membr. Sci. 475(2015) 175-183.[45] T. Sakaguchi, F. Katsura, A. Iwase, T. Hashimoto, CO2-permselective membranes of crosslinked poly(vinyl ether)s bearing oxyethylene chains, Polymer 55(6) (2014) 1459-1466.[46] S. Quan, S. Li, Z. Wang, X. Yan, Z. Guo, L. Shao, A bio-inspired CO2-philic network membrane for enhanced sustainable gas separation, J. Mater. Chem. A 3(26) (2015) 13758-13766.[47] G.K. Kline, J.R. Weidman, Q. Zhang, R. Guo, Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO2-selective separations, J. Membr. Sci. 544(2017) 25-34.[48] A.A. Salih, C. Yi, H. Peng, B. Yang, L. Yin, W. Wang, Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for CO2 separation, J. Membr. Sci. 472(2014) 110-118.[49] S. Li, Z. Wang, C. Zhang, M. Wang, F. Yuan, J. Wang, S. Wang, Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation, J. Membr. Sci. 436(2013) 121-131.[50] T.C. Merkel, H. Lin, X. Wei, R. Baker, Power plant post-combustion carbon dioxide capture:An opportunity for membranes, J. Membr. Sci. 359(1) (2010) 126-139.[51] H. Lin, S.M. Thompson, A. Serbanescu-Martin, J.G. Wijmans, K.D. Amo, K.A. Lokhandwala, T.C. Merkel, Dehydration of natural gas using membranes. Part I:Composite membranes, J. Membr. Sci. 413(2012) 70-81.[52] T.C. Merkel, I. Pinnau, R. Prabhakar, B.D. Freeman, Gas and vapor transport properties of perfluoropolymers, in:B.D. Freeman, Y. Yampolskii, I. Pinnau (Eds.), Material Science of Membranes for Gas and Vapor Separation, John Wiley & Sons, 2006.[53] I. Pinnau, L.G. Toy, Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene, J. Membr. Sci. 109(1) (1996) 125-133.[54] Y. Okamoto, H. Zhang, F. Mikes, Y. Koike, Z. He, T.C. Merkel, New perfluorodioxolane-based membranes for gas separations, J. Membr. Sci. 471(2014) 412-419.[55] M. Fang, Y. Okamoto, Y. Koike, Z. He, T.C. Merkel, Gas separation membranes prepared with copolymers of perfluoro(2-methylene-4,5-dimethyl-1,3-dioxlane) and chlorotrifluoroethylene, J. Fluor. Chem. 188(2016) 18-22.[56] T. Merkel, V. Bondar, K. Nagai, B. Freeman, Y.P. Yampolskii, Gas sorption, diffusion, and permeation in poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene), Macromolecules 32(25) (1999) 8427-8440.[57] A.Y. Alentiev, V. Shantarovich, T. Merkel, V. Bondar, B. Freeman, Y.P. Yampolskii, Gas and vapor sorption, permeation, and diffusion in glassy amorphous Teflon AF1600, Macromolecules 35(25) (2002) 9513-9522.[58] V. Arcella, A. Ghielmi, G. Tommasi, High performance perfluoropolymer films and membranes, Ann. N. Y. Acad. Sci. 984(1) (2003) 226-244.[59] M. Yavari, M. Fang, H. Nguyen, T.C. Merkel, H. Lin, Y. Okamoto, Dioxolane-based perfluoropolymers with superior membrane gas separation properties, Macromolecules 51(7) (2018) 2489-2497.[60] M. Fang, Z. He, T.C. Merkel, Y. Okamoto, High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement, J. Mater. Chem. A 6(2018) 652-658.[61] R.R. Tiwari, Z.P. Smith, H. Lin, B. Freeman, D. Paul, Gas permeation in thin films of "high free-volume" glassy perfluoropolymers:Part I. Physical aging, Polymer 55(22) (2014) 5788-5800.[62] R.R. Tiwari, Z.P. Smith, H. Lin, B. Freeman, D. Paul, Gas permeation in thin films of "high free-volume" glassy perfluoropolymers:Part Ⅱ. CO2 plasticization and sorption, Polymer 61(2015) 1-14.[63] M. Yavari, T. Le, H. Lin, Physical aging of glassy perfluoropolymers in thin film composite membranes. Part I. Gas transport properties, J. Membr. Sci. 525(2017) 387-398.[64] M. Yavari, S. Maruf, Y. Ding, H. Lin, Physical aging of glassy perfluoropolymers in thin film composite membranes. Part Ⅱ. Glass transition temperature and the free volume model, J. Membr. Sci. 525(2017) 399-408.[65] P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs):Robust, solution-processable, organic nanoporous materials, Chem. Commun. 0(2) (2004) 230-231.[66] P.M. Budd, N.B. McKeown, D. Fritsch, Free volume and intrinsic microporosity in polymers, J. Mater. Chem. 15(20) (2005) 1977-1986.[67] N.B. McKeown, P.M. Budd, Polymers of intrinsic microporosity (PIMs):Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev. 35(8) (2006) 675-683.[68] P.M. Budd, N.B. McKeown, B.S. Ghanem, K.J. Msayib, D. Fritsch, L. Starannikova, N. Belov, O. Sanfirova, Y. Yampolskii, V. Shantarovich, Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity:Polybenzodioxane PIM-1, J. Membr. Sci. 325(2) (2008) 851-860.[69] P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity, J. Membr. Sci. 251(1-2) (2005) 263-269.[70] C.G. Bezzu, M. Carta, A. Tonkins, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation, Adv. Mater. 24(44) (2012) 5930-5933.[71] I. Rose, C.G. Bezzu, M. Carta, B. Comesaña-Gándara, E. Lasseuguette, M.C. Ferrari, P. Bernardo, G. Clarizia, A. Fuoco, J.C. Jansen, Polymer ultrapermeability from the inefficient packing of 2D chains, Nat. Mater. 16(9) (2017) 932.[72] M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, An efficient polymer molecular sieve for membrane gas separations, Science 339(6117) (2013) 303-307.[73] M. Carta, M. Croad, R. Malpass-Evans, J.C. Jansen, P. Bernardo, G. Clarizia, K. Friess, M. Lan?, N.B. McKeown, Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers, Adv. Mater. 26(21) (2014) 3526-3531.[74] Y. Rogan, L. Starannikova, V. Ryzhikh, Y. Yampolskii, P. Bernardo, F. Bazzarelli, J.C. Jansen, N.B. McKeown, Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity, Polym. Chem. 4(13) (2013) 3813-3820.[75] Y. Rogan, R. Malpass-Evans, M. Carta, M. Lee, J.C. Jansen, P. Bernardo, G. Clarizia, E. Tocci, K. Friess, M. Lan?, A highly permeable polyimide with enhanced selectivity for membrane gas separations, J. Mater. Chem. A 2(14) (2014) 4874-4877.[76] N. Alaslai, X. Ma, B. Ghanem, Y. Wang, F. Alghunaimi, I. Pinnau, Synthesis and characterization of a novel microporous dihydroxyl-functionalized triptycenediamine-based polyimide for natural gas membrane separation, Macromol. Rapid Commun. 38(18) (2017).[77] M. Carta, P. Bernardo, G. Clarizia, J.C. Jansen, N.B. McKeown, Gas permeability of hexaphenylbenzene based polymers of intrinsic microporosity, Macromolecules 47(23) (2014) 8320-8327.[78] Q. Song, S. Cao, R.H. Pritchard, B. Ghalei, S.A. Al-Muhtaseb, E.M. Terentjev, A.K. Cheetham, E. Sivaniah, Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes, Nat. Commun. 5(2014) 4813.[79] Q. Song, S. Cao, P. Zavala-Rivera, L.P. Lu, W. Li, Y. Ji, S.A. Al-Muhtaseb, A.K. Cheetham, E. Sivaniah, Photo-oxidative enhancement of polymeric molecular sieve membranes, Nat. Commun. 4(2013) 1918.[80] T.O. McDonald, R. Akhtar, C.H. Lau, T. Ratvijitvech, G. Cheng, R. Clowes, D.J. Adams, T. Hasell, A.I. Cooper, Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties, J. Mater. Chem. A 3(9) (2015) 4855-4864.[81] W.F. Yong, T.-S. Chung, Miscible blends of carboxylated polymers of intrinsic microporosity (cPIM-1) and Matrimid, Polymer 59(2015) 290-297.[82] L. Hao, P. Li, T.-S. Chung, PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide, J. Membr. Sci. 453(2014) 614-623.[83] L. Yang, Z. Tian, X. Zhang, X. Wu, Y. Wu, Y. Wang, D. Peng, S. Wang, H. Wu, Z. Jiang, Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane, J. Membr. Sci. 543(2017) 69-78.[84] T. Mitra, R.S. Bhavsar, D.J. Adams, P.M. Budd, A.I. Cooper, PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers, Chem. Commun. 52(32) (2016) 5581-5584.[85] M.L. Jue, V. Breedveld, R.P. Lively, Defect-free PIM-1 hollow fiber membranes, J. Membr. Sci. 530(2017) 33-41.[86] Z.G. Wang, X. Liu, D. Wang, J. Jin, Tröger's base-based copolymers with intrinsic microporosity for CO2 separation and effect of Tröger's base on separation performance, Polym. Chem. 5(8) (2014) 2793-2800.[87] N.B. McKeown, Polymers of intrinsic microporosity, ISRN Mater. Sci. 2012(2012).[88] F. Alghunaimi, B. Ghanem, N. Alaslai, R. Swaidan, E. Litwiller, I. Pinnau, Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides, J. Membr. Sci. 490(2015) 321-327.[89] M.M. Khan, G. Bengtson, S. Shishatskiy, B.N. Gacal, M.M. Rahman, S. Neumann, V. Filiz, V. Abetz, Cross-linking of polymer of intrinsic microporosity (PIM-1) via nitrene reaction and its effect on gas transport property, Eur. Polym. J. 49(12) (2013) 4157-4166.[90] H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E. Van Wagner, B.D. Freeman, D.J. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science 318(5848) (2007) 254-258.[91] S. Kim, Y.M. Lee, Rigid and microporous polymers for gas separation membranes, Prog. Polym. Sci. 43(2015) 1-32.[92] H. Wang, T.-S. Chung, The evolution of physicochemical and gas transport properties of thermally rearranged polyhydroxyamide (PHA), J. Membr. Sci. 385(2011) 86-95.[93] C. Aguilar-Lugo, C. Álvarez, Y.M. Lee, J.G. de la Campa, A.n.E. Lozano, Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from orthosubstituted precursor copolyimides, Macromolecules 51(5) (2018) 1605-1619.[94] S.H. Han, N. Misdan, S. Kim, C.M. Doherty, A.J. Hill, Y.M. Lee, Thermally rearranged (TR) polybenzoxazole:Effects of diverse imidization routes on physical properties and gas transport behaviors, Macromolecules 43(18) (2010) 7657-7667.[95] R. Guo, D.F. Sanders, Z.P. Smith, B.D. Freeman, D.R. Paul, J.E. McGrath, Synthesis and characterization of thermally rearranged (TR) polymers:Effect of glass transition temperature of aromatic poly (hydroxyimide) precursors on TR process and gas permeation properties, J. Mater. Chem. A 1(19) (2013) 6063-6072.[96] S.H. Han, J.E. Lee, K.-J. Lee, H.B. Park, Y.M. Lee, Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement, J. Membr. Sci. 357(1-2) (2010) 143-151.[97] M. Calle, C.M. Doherty, A.J. Hill, Y.M. Lee, Cross-linked thermally rearranged poly (benzoxazole-co-imide) membranes for gas separation, Macromolecules 46(20) (2013) 8179-8189.[98] M. Calle, H.J. Jo, C.M. Doherty, A.J. Hill, Y.M. Lee, Cross-linked thermally rearranged poly (benzoxazole-co-imide) membranes prepared from ortho-hydroxycopolyimides containing pendant carboxyl groups and gas separation properties, Macromolecules 48(8) (2015) 2603-2613.[99] H.J. Jo, C.Y. Soo, G. Dong, Y.S. Do, H.H. Wang, M.J. Lee, J.R. Quay, M.K. Murphy, Y.M. Lee, Thermally rearranged poly (benzoxazole-co-imide) membranes with superior mechanical strength for gas separation obtained by tuning chain rigidity, Macromolecules 48(7) (2015) 2194-2202.[100] C.A. Scholes, C.P. Ribeiro, S.E. Kentish, B.D. Freeman, Thermal rearranged poly (benzoxazole-co-imide) membranes for CO2 separation, J. Membr. Sci. 450(2014) 72-80.[101] J.I. Choi, C.H. Jung, S.H. Han, H.B. Park, Y.M. Lee, Thermally rearranged (TR) poly (benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity, J. Membr. Sci. 349(1-2) (2010) 358-368.[102] Y. Xiao, T.-S. Chung, Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture, Energy Environ. Sci. 4(1) (2011) 201-208.[103] M.L. Chua, Y.C. Xiao, T.-S. Chung, Modifying the molecular structure and gas separation performance of thermally labile polyimide-based membranes for enhanced natural gas purification, Chem. Eng. Sci. 104(2013) 1056-1064.[104] S. Li, H.J. Jo, S.H. Han, C.H. Park, S. Kim, P.M. Budd, Y.M. Lee, Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation, J. Membr. Sci. 434(2013) 137-147.[105] S. Kim, S.H. Han, Y.M. Lee, Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture, J. Membr. Sci. 403(2012) 169-178.[106] K.T. Woo, J. Lee, G. Dong, J.S. Kim, Y.S. Do, W.-S. Hung, K.-R. Lee, G. Barbieri, E. Drioli, Y.M. Lee, Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance, J. Membr. Sci. 490(2015) 129-138.[107] Y. Jiang, C.F. Chen, Recent developments in synthesis and applications of triptycene and pentiptycene derivatives, Eur. J. Org. Chem. 2011(32) (2011) 6377-6403.[108] T.M. Long, T.M. Swager, Using "internal free volume" to increase chromophore alignment, J. Am. Chem. Soc. 124(15) (2002) 3826-3827.[109] Y.J. Cho, H.B. Park, High performance polyimide with high internal free volume elements, Macromol. Rapid Commun. 32(7) (2011) 579-586.[110] S. Luo, Q. Liu, B. Zhang, J.R. Wiegand, B.D. Freeman, R. Guo, Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation, J. Membr. Sci. 480(2015) 20-30.[111] S. Luo, J.R. Wiegand, P. Gao, C.M. Doherty, A.J. Hill, R. Guo, Molecular origins of fast and selective gas transport in pentiptycene-containing polyimide membranes and their physical aging behavior, J. Membr. Sci. 518(2016) 100-109.[112] S. Luo, J.R. Wiegand, B. Kazanowska, C.M. Doherty, K. Konstas, A.J. Hill, R. Guo, Finely tuning the free volume architecture in iptycene-containing polyimides for highly selective and fast hydrogen transport, Macromolecules 49(9) (2016) 3395-3405.[113] B.S. Ghanem, R. Swaidan, E. Litwiller, I. Pinnau, Ultra-microporous triptycenebased polyimide membranes for high-performance gas separation, Adv. Mater. 26(22) (2014) 3688-3692.[114] R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Effects of hydroxyl-functionalization and sub-Tg thermal annealing on high pressure pure-and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides, J. Membr. Sci. 475(2015) 571-581.[115] H. Mao, S. Zhang, Synthesis, characterization, and gas transport properties of novel iptycene-based poly[bis(benzimidazobenzisoquinolinones)], Polymer 55(1) (2014) 102-109.[116] I. Rose, M. Carta, R. Malpass-Evans, M.-C. Ferrari, P. Bernardo, G. Clarizia, J.C. Jansen, N.B. McKeown, Highly permeable benzotriptycene-based polymer of intrinsic microporosity, ACS Macro Lett. 4(9) (2015) 912-915.[117] J.R. Weidman, R. Guo, The use of iptycenes in rational macromolecular design for gas separation membrane applications, Ind. Eng. Chem. Res. 56(15) (2017) 4220-4236.[118] S.A. Lawrence, Amines:Synthesis, Properties and Applications, Cambridge University Press, 2004.[119] T.J. Kim, B. Li, M.B. Hägg, Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture, J. Polym. Sci. B Polym. Phys. 42(23) (2004) 4326-4336.[120] M. Sandru, T.-J. Kim, M.-B. Hägg, High molecular fixed-site-carrier PVAm membrane for CO2 capture, Desalination 240(1-3) (2009) 298-300.[121] Z. Tong, W.S.W. Ho, New sterically hindered polyvinylamine membranes for CO2 separation and capture, J. Membr. Sci. 543(2017) 202-211.[122] S.B. Hamouda, Q.T. Nguyen, D. Langevin, S. Roudesli, Poly(vinylalcohol)/poly (ethyleneglycol)/poly(ethyleneimine) blend membranes-Structure and CO2 facilitated transport, C. R. Chim. 13(3) (2010) 372-379.[123] M.S.A. Rahaman, L. Zhang, L.-H. Cheng, X.-H. Xu, H.-L. Chen, Capturing carbon dioxide from air using a fixed carrier facilitated transport membrane, RSC Adv. 2(24) (2012) 9165-9172.[124] Y. Liu, S. Yu, H. Wu, Y. Li, S. Wang, Z. Tian, Z. Jiang, High permeability hydrogel membranes of chitosan/polyether-block-amide blends for CO2 separation, J. Membr. Sci. 469(2014) 198-208.[125] M. Sandru, S.H. Haukebø, M.-B. Hägg, Composite hollow fiber membranes for CO2 capture, J. Membr. Sci. 346(1) (2010) 172-186.[126] L. Deng, M.-B. Hägg, Fabrication and evaluation of a blend facilitated transport membrane for CO2/CH4 separation, Ind. Eng. Chem. Res. 54(44) (2015) 11139-11150.[127] P. Li, Z. Wang, W. Li, Y. Liu, J. Wang, S. Wang, High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation, ACS Appl. Mater. Interfaces 7(28) (2015) 15481-15493.[128] S. Li, Z. Wang, X. Yu, J. Wang, S. Wang, High-performance membranes with multipermselectivity for CO2 separation, Adv. Mater. 24(24) (2012) 3196-3200.[129] W. He, Z. Wang, W. Li, S. Li, Z. Bai, J. Wang, S. Wang, Cyclic tertiary amino group containing fixed carrier membranes for CO2 separation, J. Membr. Sci. 476(2015) 171-181.[130] X. Yu, Z. Wang, Z. Wei, S. Yuan, J. Zhao, J. Wang, S. Wang, Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture, J. Membr. Sci. 362(1-2) (2010) 265-278.[131] H. Bai, W.S.W. Ho, New carbon dioxide-selective membranes based on sulfonated polybenzimidazole (SPBI) copolymer matrix for fuel cell applications, Ind. Eng. Chem. Res. 48(5) (2008) 2344-2354.[132] R. Xing, W.S.W. Ho, Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation, J. Membr. Sci. 367(1-2) (2011) 91-102.[133] Y. Zhao, W.S.W. Ho, CO2-selective membranes containing sterically hindered amines for CO2/H2 separation, Ind. Eng. Chem. Res. 52(26) (2012) 8774-8782.[134] V. Vakharia, K. Ramasubramanian, W.S.W. Ho, An experimental and modeling study of CO2-selective membranes for IGCC syngas purification, J. Membr. Sci. 488(2015) 56-66.[135] S. Yuan, Z. Wang, Z. Qiao, M. Wang, J. Wang, S. Wang, Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine, J. Membr. Sci. 378(1-2) (2011) 425-437.[136] Z. Qiao, Z. Wang, S. Yuan, J. Wang, S. Wang, Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation, J. Membr. Sci. 475(2015) 290-302.[137] Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang, S. Wang, PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation, AIChE J. 59(1) (2013) 215-228.[138] Y. Chen, L. Zhao, B. Wang, P. Dutta, W.S.W. Ho, Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation, J. Membr. Sci. 497(2016) 21-28.[139] Y. Chen, W.S.W. Ho, High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas, J. Membr. Sci. 514(2016) 376-384.[140] W. Salim, V. Vakharia, Y. Chen, D. Wu, Y. Han, W.S.W. Ho, Fabrication and field testing of spiral-wound membrane modules for CO2 capture from flue gas, J. Membr. Sci. 556(2018) 126-137.[141] M. Sandru, T.-J. Kim, W. Capala, M. Huijbers, M.-B. Hägg, Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants, Energy Procedia 37(2013) 6473-6480.[142] J. Huang, J. Zou, W.S.W. Ho, Carbon dioxide capture using a CO2-selective facilitated transport membrane, Ind. Eng. Chem. Res. 47(4) (2008) 1261-1267.[143] J. Zou, W.S.W. Ho, CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol), J. Membr. Sci. 286(1) (2006) 310-321.[144] R. Pelton, Polyvinylamine:A tool for engineering interfaces, Langmuir 30(51) (2014) 15373-15382.[145] D. Wu, C. Sun, P.K. Dutta, W.W. Ho, SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas, J. Membr. Sci. 534(2017) 33-45.[146] S. Li, Z. Wang, W. He, C. Zhang, H. Wu, J. Wang, S. Wang, Effects of minor SO2 on the transport properties of fixed carrier membranes for CO2 capture, Ind. Eng. Chem. Res. 53(18) (2014) 7758-7767.[147] V. Vakharia, W. Salim, M. Gasda, W.S.W. Ho, Oxidatively stable membranes for CO2 separation and H2 purification, J. Membr. Sci. 533(2017) 220-228.[148] L. Xiong, S. Gu, K.O. Jensen, Y.S. Yan, Facilitated transport in hydroxide-exchange membranes for post-combustion CO2 separation, ChemSusChem 7(1) (2014) 114-116.[149] Y. Wang, Y. Shang, X. Li, T. Tian, L. Gao, L. Jiang, Fabrication of CO2 facilitated transport channels in block copolymer through supramolecular assembly, Polymers 6(5) (2014) 1403-1413.[150] N.V. Blinova, F. Svec, Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane, J. Membr. Sci. 423(2012) 514-521. [151] P. Li, Z. Wang, Y. Liu, S. Zhao, J. Wang, S. Wang, A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances, J. Membr. Sci. 476(2015) 243-255.[152] M. Wang, Z. Wang, J. Wang, Y. Zhu, S. Wang, An antioxidative composite membrane with the carboxylate group as a fixed carrier for CO2 separation from flue gas, Energy Environ. Sci. 4(10) (2011) 3955-3959.[153] M. Wang, Z. Wang, S. Li, C. Zhang, J. Wang, S. Wang, A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas, Energy Environ. Sci. 6(2) (2013) 539-551.[154] W.M. McDanel, M.G. Cowan, N.O. Chisholm, D.L. Gin, R.D. Noble, Fixed-site-carrier facilitated transport of carbon dioxide through ionic-liquid-based epoxy-amine ion gel membranes, J. Membr. Sci. 492(2015) 303-311.[155] K. Friess, M. Lan?, K. Pilná?ek, V. Fíla, O. Vopi?ka, Z. Sedláková, M.G. Cowan, W.M. McDanel, R.D. Noble, D.L. Gin, CO2/CH4 separation performance of ionic-liquidbased epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing, J. Membr. Sci. 528(2017) 64-71.[156] Z. Dai, L. Ansaloni, D.L. Gin, R.D. Noble, L. Deng, Facile fabrication of CO2 separation membranes by cross-linking of poly (ethylene glycol) diglycidyl ether with a diamine and a polyamine-based ionic liquid, J. Membr. Sci. 523(2017) 551-560.[157] S. Kasahara, E. Kamio, A. Yoshizumi, H. Matsuyama, Polymeric ion-gels containing an amino acid ionic liquid for facilitated CO2 transport media, Chem. Commun. 50(23) (2014) 2996-2999.[158] F. Moghadam, E. Kamio, H. Matsuyama, High CO2 separation performance of amino acid ionic liquid-based double network ion gel membranes in low CO2 concentration gas mixtures under humid conditions, J. Membr. Sci. 525(2017) 290-297.[159] F. Moghadam, E. Kamio, T. Yoshioka, H. Matsuyama, New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport, J. Membr. Sci. 530(2017) 166-175.[160] M. Saeed, L. Deng, CO2 facilitated transport membrane promoted by mimic enzyme, J. Membr. Sci. 494(2015) 196-204.[161] M. Saeed, L. Deng, Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture, Int. J. Greenhouse Gas Control 53(2016) 254-262.[162] K. Yao, Z. Wang, J. Wang, S. Wang, Biomimetic material-poly(N-vinylimidazole)-zinc complex for CO2 separation, Chem. Commun. 48(12) (2012) 1766-1768.[163] M.G. Cowan, D.L. Gin, R.D. Noble, Poly (ionic liquid)/ionic liquid ion-gels with high "free" ionic liquid content:Platform membrane materials for CO2/light gas separations, Acc. Chem. Res. 49(4) (2016) 724-732.[164] W.M. McDanel, M.G. Cowan, T.K. Carlisle, A.K. Swanson, R.D. Noble, D.L. Gin, Crosslinked ionic resins and gels from epoxide-functionalized imidazolium ionic liquid monomers, Polymer 55(16) (2014) 3305-3313.[165] J.K. Yong, G.W. Stevens, F. Caruso, S.E. Kentish, The use of carbonic anhydrase to accelerate carbon dioxide capture processes, J. Chem. Technol. Biotechnol. 90(1) (2015) 3-10.[166] Y. Xu, L. Feng, P.D. Jeffrey, Y. Shi, F.M. Morel, Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms, Nature 452(7183) (2008) 56.[167] H. Lin, E. Van Wagner, B.D. Freeman, L.G. Toy, R.P. Gupta, Plasticization-enhanced hydrogen purification using polymeric membranes, Science 311(5761) (2006) 639-642.[168] D. Bocciardo, M.-C. Ferrari, S. Brandani, Modelling and multi-stage design of membrane processes applied to carbon capture in coal-fired power plants, Energy Procedia 37(2013) 932-940.[169] K. Ramasubramanian, H. Verweij, W.S.W. Ho, Membrane processes for carbon capture from coal-fired power plant flue gas:A modeling and cost study, J. Membr. Sci. 421(2012) 299-310.[170] D. Wu, L. Zhao, V.K. Vakharia, W. Salim, W.S.W. Ho, Synthesis and characterization of nanoporous polyethersulfone membrane as support for composite membrane in CO2 separation:From lab to pilot scale, J. Membr. Sci. 510(2016) 58-71.[171] G.Z. Ramon, M.C. Wong, E.M. Hoek, Transport through composite membrane, part 1:Is there an optimal support membrane? J. Membr. Sci. 415(2012) 298-305.[172] M. Kattula, K. Ponnuru, L. Zhu, W. Jia, H. Lin, E.P. Furlani, Designing ultrathin film composite membranes:The impact of a gutter layer, Sci. Rep. 5(2015).[173] R.P. Singh, K.A. Berchtold, H2 selective membranes for precombustion carbon capture, Novel Materials for Carbon Dioxide Mitigation Technology, Elsevier 2015, pp. 177-206.[174] W. Salim, V. Vakharia, K.K. Chen, M. Gasda, W.S.W. Ho, Oxidatively stable boratecontaining membranes for H2 purification for fuel cells, J. Membr. Sci. 562(2018) 9-17.[175] G. Liu, N. Li, S.J. Miller, D. Kim, S. Yi, Y. Labreche, W.J. Koros, Molecularly designed stabilized asymmetric hollow fiber membranes for aggressive natural gas separation, Angew. Chem. 128(44) (2016) 13958-13962. |
[1] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[2] | Zhengchi Yin, Xiaoke Wu, Yanwei Yang, Huayu Zhang, Wangtao Li, Ruimin Zhu, Qiancheng Zheng, Zhengbao Wang. Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 101-110. |
[3] | Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS) [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 215-231. |
[4] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 64-72. |
[5] | Suisui Zhang, Jingying Li, Yan Nie, Luyao Qiang, Boyang Bai, Zhiwei Peng, Xiaoxun Ma. Life cycle assessment of HFC-134a production by calcium carbide acetylene route in China [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 236-244. |
[6] | Xia Zhan, Xueying Zhao, Zhongyong Gao, Rui Ge, Juan Lu, Luying Wang, Jiding Li. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 19-36. |
[7] | Ye Yuan, Yurui Pan, Menglong Sheng, Guangyu Xing, Ming Wang, Jixiao Wang, Zhi Wang. Synthesis and optimization of high-performance amine-based polymer for CO2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 168-176. |
[8] | Golchehreh Bayat, Roozbeh Saghatchi, Jafar Azamat, Alireza Khataee. Separation of methane from different gas mixtures using modified silicon carbide nanosheet: Micro and macro scale numerical studies [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1268-1276. |
[9] | Mengqi Shi, Chenxi Dong, Zhi Wang, Xinxia Tian, Song Zhao, Jixiao Wang. Support surface pore structures matter: Effects of support surface pore structures on the TFC gas separation membrane performance over a wide pressure range [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1807-1816. |
[10] | Gholamhossein Sodeifian, Mojtaba Raji, Morteza Asghari, Mashallah Rezakazemi, Amir Dashti. Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation [J]. Chin.J.Chem.Eng., 2019, 27(2): 322-334. |
[11] | Yibin Wei, Hengfei Zhang, Jiaojiao Lei, Huating Song, Hong Qi. Controlling pore structures of Pd-doped organosilica membranes by calcination atmosphere for gas separation [J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 3036-3042. |
[12] | Ke Deng, Zhuang Liu, Jiaqi Hu, Wenying Liu, Lei Zhang, Rui Xie, Xiaojie Ju, Wei Wang, Liangyin Chu. Composite bilayer films with organic compound-triggered bending properties [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2587-2595. |
[13] | Hongyong Zhao, Lizhong Feng, Xiaoli Ding, Xiaoyao Tan, Yuzhong Zhang. Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate [J]. Chin.J.Chem.Eng., 2018, 26(12): 2477-2486. |
[14] | Misagh Ahmadi, Sara Masoumi, Shadi Hassanajili, Feridun Esmaeilzadeh. Modification of PES/PU membrane by supercritical CO2 to enhance CO2/CH4 selectivity: Fabrication and correlation approach using RSM [J]. Chin.J.Chem.Eng., 2018, 26(12): 2503-2515. |
[15] | Gang Yue, Aixian Liu, Qiang Sun, Xingxun Li, Wenjie Lan, Lanying Yang, Xuqiang Guo. The combination of 1-octyl-3-methylimidazolium tetrafluorborate with TBAB or THF on CO2 hydrate formation and CH4 separation from biogas [J]. Chin.J.Chem.Eng., 2018, 26(12): 2495-2502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||