Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (10): 2587-2595.DOI: 10.1016/j.cjche.2018.11.018
• Materials and Product Engineering • Previous Articles Next Articles
Ke Deng1, Zhuang Liu1,2, Jiaqi Hu1, Wenying Liu1, Lei Zhang1, Rui Xie1,2, Xiaojie Ju1,2, Wei Wang1,2, Liangyin Chu1,2
Received:
2018-09-27
Revised:
2018-11-21
Online:
2020-01-17
Published:
2019-10-28
Contact:
Zhuang Liu, Liangyin Chu
Supported by:
Ke Deng1, Zhuang Liu1,2, Jiaqi Hu1, Wenying Liu1, Lei Zhang1, Rui Xie1,2, Xiaojie Ju1,2, Wei Wang1,2, Liangyin Chu1,2
通讯作者:
Zhuang Liu, Liangyin Chu
基金资助:
Ke Deng, Zhuang Liu, Jiaqi Hu, Wenying Liu, Lei Zhang, Rui Xie, Xiaojie Ju, Wei Wang, Liangyin Chu. Composite bilayer films with organic compound-triggered bending properties[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2587-2595.
Ke Deng, Zhuang Liu, Jiaqi Hu, Wenying Liu, Lei Zhang, Rui Xie, Xiaojie Ju, Wei Wang, Liangyin Chu. Composite bilayer films with organic compound-triggered bending properties[J]. 中国化学工程学报, 2019, 27(10): 2587-2595.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.11.018
[1] M. Kondo, Y. Yu, T. Ikeda, How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers, Angew. Chem. 45(9) (2006) 1378-1382. [2] S. Taccola, F. Greco, E. Sinibaldi, A. Mondini, B. Mazzolai, V. Mattoli, Toward a new generation of electrically controllable hygromorphic soft actuators, Adv. Mater. 27(10) (2015) 1668-1675. [3] J. Gong, H. Lin, J.W. Dunlop, J. Yuan, Hierarchically arranged helical fiber actuators derived from commercial cloth, Adv. Mater. 29(16) (2017), 1605103. [4] P. Chen, Y. Xu, S. He, X. Sun, S. Pan, J. Deng, D. Chen, H. Peng, Hierarchically arranged helical fibre actuators driven by solvents and vapours, Nat. Nanotechnol. 10(12) (2015) 1077-1083. [5] J. Mu, C. Hou, H. Wang, Y. Li, Q. Zhang, M. Zhu, Origami-inspired active graphenebased paper for programmable instant self-folding walking devices, Sci. Adv. 1(10) (2015), e1500533. [6] Q. Zhao, J. Heyda, J. Dzubiella, K. Täuber, J.W. Dunlop, J. Yuan, Sensing solvents with ultrasensitive porous poly (ionic liquid) actuators, Adv. Mater. 27(18) (2015) 2913-2917. [7] A. Buguin, M.-H. Li, P. Silberzan, B. Ladoux, P. Keller, Micro-actuators:When artificial muscles made of nematic liquid crystal elastomers meet soft lithography, J. Am. Chem. Soc. 128(4) (2006) 1088-1089. [8] T. Mirfakhrai, J.D. Madden, R.H. Baughman, Polymer artificial muscles, Mater. Today 10(4) (2007) 30-38. [9] S.M. Mirvakili, I.W. Hunter, Multidirectional artificial muscles from nylon, Adv. Mater. 29(4) (2017), 1604734. [10] S.M. Mirvakili, I.W. Hunter, Artificial muscles:Mechanisms, applications, and challenges, Adv. Mater. 30(6) (2018), 1704407. [11] F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, G.M. Whitesides, Soft robotics for chemists, Angew. Chem. 123(8) (2011) 1930-1935. [12] D. Rus, M.T. Tolley, Design, fabrication and control of soft robots, Nature 521(7553) (2015) 467-475. [13] R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, Multigait soft robot, Proc. Natl. Acad. Sci. 108(51) (2011) 20400-20403. [14] M.D. Manrique-Juárez, F. Mathieu, A. Laborde, S. Rat, V. Shalabaeva, P. Demont, O. Thomas, L. Salmon, T. Leichle, L. Nicu, Micromachining-compatible, facile fabrication of polymer nanocomposite spin crossover actuators, Adv. Funct. Mater. 28(29) (2018), 1801970. [15] H. Kim, H. Lee, I. Ha, J. Jung, P. Won, H. Cho, J. Yeo, S. Hong, S. Han, J. Kwon, Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics, Adv. Funct. Mater. 28(32) (2018) 1801847. [16] Y.C. Lai, J. Deng, R. Liu, Y.C. Hsiao, S.L. Zhang, W. Peng, H.M. Wu, X. Wang, Z.L. Wang, Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity- and pressure-sensing skins, Adv. Mater. 30(28) (2018), 1801114. [17] M. Ma, L. Guo, D.G. Anderson, R. Langer, Bio-inspired polymer composite actuator and generator driven by water gradients, Science 339(6116) (2013) 186-189. [18] L. Zhang, S. Chizhik, Y. Wen, P. Naumov, Directed motility of hygroresponsive biomimetic actuators, Adv. Funct. Mater. 26(7) (2016) 1040-1053. [19] J. Mu, C. Hou, B. Zhu, H. Wang, Y. Li, Q. Zhang, A multi-responsive water-driven actuator with instant and powerful performance for versatile applications, Sci. Rep. 5(1) (2015) 9503. [20] Z. Hu, X. Zhang, Y. Li, Synthesis and application of modulated polymer gels, Science 269(5223) (1995) 525-527. [21] F. Ilmain, T. Tanaka, E. Kokufuta, Volume transition in a gel driven by hydrogen bonding, Nature 349(6308) (1991) 400-401. [22] S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, H. Misawa, Reversible phase transitions in polymer gels induced by radiation forces, Nature 408(6809) (2000) 178-181. [23] C. Yao, Z. Liu, C. Yang, W. Wang, X.J. Ju, R. Xie, L.Y. Chu, Poly (N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperaturecontrolled manipulators, Adv. Funct. Mater. 25(20) (2015) 2980-2991. [24] L. Zhang, Z. Liu, L.Y. Liu, J.L. Pan, F. Luo, C. Yang, R. Xie, X.J. Ju, W. Wang, L.Y. Chu, Nanostructured thermo-responsive surfaces engineered via stable immobilization of smart nanogels with assistance of polydopamine, ACS Appl. Mater. Interfaces (2018) https://doi.org/10.1021/acsami.8b20395. [25] B.P. Lee, S. Konst, Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry, Adv. Mater. 26(21) (2014) 3415-3419. [26] K. Lee, S.A. Asher, Photonic crystal chemical sensors:pH and ionic strength, J. Am. Chem. Soc. 122(39) (2000) 9534-9537. [27] C. Ma, T. Li, Q. Zhao, X. Yang, J. Wu, Y. Luo, T. Xie, Supramolecular lego assembly towards three-dimensional multi-responsive hydrogels, Adv. Mater. 26(32) (2014) 5665-5669. [28] T.S. Shim, S.H. Kim, C.J. Heo, H.C. Jeon, S.M. Yang, Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers, Angew. Chem. 51(6) (2012) 1420-1423. [29] Y. Tai, G. Lubineau, Z. Yang, Light-activated rapid-response polyvinylidene-fluoridebased flexible films, Adv. Mater. 28(23) (2016) 4665-4670. [30] Y. Hu, J. Liu, L. Chang, L. Yang, A. Xu, K. Qi, P. Lu, G. Wu, W. Chen, Y. Wu, Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite, Adv. Funct. Mater. 27(44) (2017) 1703083. [31] Y. Hu, G. Wu, T. Lan, J. Zhao, Y. Liu, W. Chen, A graphene-based bimorph structure for design of high performance photoactuators, Adv. Mater. 27(47) (2015) 7867-7873. [32] K. Kwan, S. Li, N. Hau, W.-D. Li, S. Feng, A.H. Ngan, Light-stimulated actuators based on nickel hydroxide-oxyhydroxide, Sci. Robot. 3(18) (2018), eaat4051. [33] K. Kajiwara, S.B. Ross-Murphy, Synthetic gels on the move, Nature 355(6357) (1992) 208-209. [34] B. Xue, M. Qin, T. Wang, J. Wu, D. Luo, Q. Jiang, Y. Li, Y. Cao, W. Wang, Electrically controllable actuators based on supramolecular peptide hydrogels, Adv. Funct. Mater. 26(48) (2016) 9053-9062. [35] C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, transparent, ionic conductors, Science 341(6149) (2013) 984-987. [36] L. Kong, W. Chen, Carbon nanotube and graphene-based bioinspired electrochemical actuators, Adv. Mater. 26(7) (2014) 1025-1043. [37] G. Wu, Y. Hu, Y. Liu, J. Zhao, X. Chen, V. Whoehling, C. Plesse, G.T. Nguyen, F. Vidal, W. Chen, Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator, Nat. Commun. 6(2015) 7258. [38] M.R. Islam, X. Li, K. Smyth, M.J. Serpe, Polymer-based muscle expansion and contraction, Angew. Chem. 52(39) (2013) 10330-10333. [39] H. Cheng, J. Liu, Y. Zhao, C. Hu, Z. Zhang, N. Chen, L. Jiang, L. Qu, Graphene fibers with predetermined deformation as moisture-triggered actuators and robots, Angew. Chem. 52(40) (2013) 10482-10486. [40] D.D. Han, Y.L. Zhang, H.B. Jiang, H. Xia, J. Feng, Q.D. Chen, H.L. Xu, H.B. Sun, Moistureresponsive graphene paper prepared by self-controlled photoreduction, Adv. Mater. 27(2) (2015) 332-338. [41] S. Zeng, R. Li, S.G. Freire, V.M. Garbellotto, E.Y. Huang, A.T. Smith, C. Hu, W.R. Tait, Z. Bian, G. Zheng, Moisture-responsive wrinkling surfaces with tunable dynamics, Adv. Mater. 29(24) (2017), 1700828. [42] L. Wang, M.Y. Razzaq, T. Rudolph, M. Heuchel, U. Nöchel, U. Mansfeld, Y. Jiang, O. Gould, M. Behl, K. Kratz, Reprogrammable, magnetically controlled polymeric nanocomposite actuators, Mater. Horiz. (2018). https://doi.org/10.1039/c8mh00266e. [43] Q. Zhao, J.W. Dunlop, X. Qiu, F. Huang, Z. Zhang, J. Heyda, J. Dzubiella, M. Antonietti, J. Yuan, An instant multi-responsive porous polymer actuator driven by solvent molecule sorption, Nat. Commun. 5(2014) 4293. [44] S. Brown, M.R. Sim, M.J. Abramson, C.N. Gray, Concentrations of volatile organic compounds in indoor air-A review, Indoor Air 4(2) (1994) 123-134. [45] R. Atkinson, J. Arey, Atmospheric degradation of volatile organic compounds, Chem. Rev. 103(12) (2003) 4605-4638. [46] G. Wypych (Ed.), Handbook of Solvents, ChemTec Publishing, Toronto, 2001. [47] Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band, Adv. Funct. Mater. 20(21) (2010) 3784-3790. [48] V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide, Angew. Chem. 49(12) (2010) 2154-2157. [49] P.-Y. Chen, M. Zhang, M. Liu, I.Y. Wong, R.H. Hurt, Ultrastretchable graphene-based molecular barriers for chemical protection, detection, and actuation, ACS Nano 12(1) (2017) 234-244. [50] M.K. Khan, W.Y. Hamad, M.J. MacLachlan, Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties, Adv. Mater. 26(15) (2014) 2323-2328. [51] C.S. Haines, M.D. Lima, N. Li, G.M. Spinks, J. Foroughi, J.D. Madden, S.H. Kim, S. Fang, M.J. de Andrade, F. Göktepe, Artificial muscles from fishing line and sewing thread, Science 343(6173) (2014) 868-872. [52] J. Deng, J. Li, P. Chen, X. Fang, X. Sun, Y. Jiang, W. Weng, B. Wang, H. Peng, Tunable photothermal actuators based on a pre-programmed aligned nanostructure, J. Am. Chem. Soc. 138(1) (2015) 225-230. [53] R.K. Gogoi, K. Raidongia, Strategic shuffling of clay layers to imbue them with responsiveness, Adv. Mater. 29(24) (2017), 1701164. [54] R.K. Gogoi, K. Saha, J. Deka, D. Brahma, K. Raidongia, Solvent-driven responsive bilayer membranes of clay and graphene oxide, J. Mater. Chem. A 5(7) (2017) 3523-3533. [55] K.J. Lee, J. Yoon, S. Rahmani, S. Hwang, S. Bhaskar, S. Mitragotri, J. Lahann, Spontaneous shape reconfigurations in multicompartmental microcylinders, Proc. Natl. Acad. Sci. 109(40) (2012) 16057-16062. [56] Y. Gu, N.S. Zacharia, Self-healing actuating adhesive based on polyelectrolyte multilayers, Adv. Funct. Mater. 25(24) (2015) 3785-3792. [57] H. Deng, Y. Dong, C. Zhang, Y. Xie, C. Zhang, J. Lin, An instant responsive polymer driven by anisotropy of crystal phases, Mater. Horiz. 5(1) (2018) 99-107. [58] H. Lin, J. Gong, H. Miao, R. Guterman, H. Song, Q. Zhao, J.W. Dunlop, J. Yuan, Flexible and actuating nanoporous poly (ionic liquid)-paper-based hybrid membranes, ACS Appl. Mater. Interfaces 9(17) (2017) 15148-15155. [59] L. Ionov, Soft microorigami:Self-folding polymer films, Soft Matter 7(15) (2011) 6786-6791. [60] Y. Tan, Z. Chu, Z. Jiang, T. Hu, G. Li, J. Song, Gyrification-inspired highly convoluted graphene oxide patterns for ultralarge deforming actuators, ACS Nano 11(7) (2017) 6843-6852. [61] C. Zhang, J.-W. Su, H. Deng, Y. Xie, Z. Yan, J. Lin, Reversible self-assembly of 3D architectures actuated by responsive polymers, ACS Appl. Mater. Interfaces 9(47) (2017) 41505-41511. [62] W.E. Lee, Y.J. Jin, L.S. Park, G. Kwak, Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure, Adv. Mater. 24(41) (2012) 5604-5609. [63] H. Deng, Y. Dong, J.-W. Su, C. Zhang, Y. Xie, C. Zhang, M.R. Maschmann, Y. Lin, J. Lin, Bioinspired programmable polymer gel controlled by swellable guest medium, ACS Appl. Mater. Interfaces 9(36) (2017) 30900-30908. [64] L. Zhang, P.e. Naumov, X. Du, Z. Hu, J. Wang, Vapomechanically responsive motion of microchannel-programmed actuators, Adv. Mater. 29(37) (2017), 1702231. [65] D.W. Van Krevelen, K. Te Nijenhuis, Properties of Polymers:Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier, Amsterdam, 2009. [66] C.M. Hansen, The universality of the solubility parameter, Ind. Eng. Chem. Prod. Rd. 8(1) (1969) 2-11. [67] J.E. Mark, Physical Properties of Polymers Handbook, Springer, London, 2007233-258. [68] W. Zhai, J. Yu, W. Ma, J. He, Cosolvent effect of water in supercritical carbon dioxide facilitating induced crystallization of polycarbonate, Polym. Eng. Sci. 47(9) (2007) 1338-1343. [69] R. Kambour, C. Gruner, E. Romagosa, Biphenol-A polycarbonate immersed in organic media. Swelling and response to stress, Macromolecules 7(2) (1974) 248-253. |
[1] | Sinu Poolachira, Sivasubramanian Velmurugan. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 253-261. |
[2] | Libing Yu, Qiuyan Huang, Jing Wu, Erhong Song, Beibei Xiao. Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 106-113. |
[3] | Jian Tian, Gen Li, Wang He, Kok Bing Tan, Daohua Sun, Junfu Wei, Qingbiao Li. Insight into the dynamic adsorption behavior of graphene oxide multichannel architecture toward contaminants [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 124-132. |
[4] | Najma Kamali, Jahan B. Ghasemi, Ghodsi Mohammadi Ziarani, Sahar Moradian, Alireza Badiei. Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As(III) from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 374-380. |
[5] | Jie Wei, Weiwei Yang, Shuai Jia, Jie Wei, Ziqiang Shao. N, P co-doped porous graphene with high electrochemical properties obtained via the laser induction of cellulose nanofibrils [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 31-38. |
[6] | Xinxin Zhao, Wenlong Xu, Shuang Chen, Huie Liu, Xiaofei Yan, Yan Bao, Zexin Liu, Fan Yang, Huan Zhang, Ping Yu. Fabrication of super-elastic graphene aerogels by ambient pressure drying and application to adsorption of oils [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 89-97. |
[7] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[8] | Yumeng Zhang, Yingying Zhang, Xueling Pan, Yao Qin, Jiawei Deng, Shanshan Wang, Qingwei Gao, Yudan Zhu, Zhuhong Yang, Xiaohua Lu. Molecular insights on Ca2+/Na+ separation via graphene-based nanopores: The role of electrostatic interactions to ionic dehydration [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 220-229. |
[9] | Shi Yuan, Yang Li, Ruosang Qiu, Yun Xia, Cordelia Selomulya, Xiwang Zhang. Minimising non-selective defects in ultrathin reduced graphene oxide membranes with graphene quantum dots for enhanced water and NaCl separation [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 278-285. |
[10] | Lu-Yue Liu, Zhuang Liu, Han-Yu Peng, Xiao-Ting Mu, Qian Zhao, Xiao-Jie Ju, Wei Wang, Rui Xie, Liang-Yin Chu. Reduced graphene oxide modified melamine sponges filling with paraffin for efficient solar-thermal conversion and heat management [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 497-506. |
[11] | Kin Kit Fong, Inn Shi Tan, Henry Chee Yew Foo, Man Kee Lam, Adrian Chiong Yuh Tiong, Steven Lim. Optimization and evaluation of reduced graphene oxide hydrogel composite as a demulsifier for heavy crude oil-in-water emulsion [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 297-305. |
[12] | Yexun Shi, Chang Li, Liming Shen, Ningzhong Bao. Structure-dependent re-dispersibility of graphene oxide powders prepared by fast spray drying [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 485-492. |
[13] | M. Ijaz Khan, Seifedine Kadry, Yuming Chu, M. Waqas. Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 17-25. |
[14] | Zesheng Li, Bolin Li, Lijun Du, Weiliang Wang, Xichun Liao, Huiqing Yu, Changlin Yu, Hongqiang Wang, Qingyu Li. Three-dimensional oxygen-doped porous graphene: Sodium chloride-template preparation, structural characterization and supercapacitor performances [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 304-314. |
[15] | Zhi-Hao Chen, Zhuang Liu, Lei Zhang, Quan-Wei Cai, Jia-Qi Hu, Wei Wang, Xiao-Jie Ju, Rui Xie, Liang-Yin Chu. Functional graphene oxide nanosheets modified with cyclodextrins for removal of Bisphenol A from water [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 79-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||