[1] A.T. Aron, K.M. Ramos-Torres, J.A. Cotruvo, C.J. Chang, Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems, Acc. Chem. Res. 48(2015)2434-2442. [2] E. Carafoli, J. Krebs, Why calcium?How calcium became the best communicator, J. Biol. Chem. 291(40)(2016)20849-20857. [3] G.C. Faas, S. Raghavachari, J.E. Lisman, I. Mody, Calmodulin as a direct detector of Ca2+ signals, Nat. Neurosci. 14(3)(2011)301-304. [4] M. Reig, S. Casas, C. Aladjem, C. Valderrama, O. Gibert, F. Valero, C.M. Centeno, E. Larrotcha, J.L. Cortina, Concentration of NaCl from seawater reverse osmosis brines for the chlor-alkali industry by electrodialysis, Desalination 342(2014) 107-117. [5] L. Tang, T.M. Gamal El-Din, J. Payandeh, G.Q. Martinez, T.M. Heard, T. Scheuer, N. Zheng, W.A. Catterall, Structural basis for Ca2+ selectivity of a voltage-gated calcium channel, Nature 505(7481)(2014)56-61. [6] M.D. Bootman, Calcium signaling, Cold Spring Harb. Perspect. Biol. 4(7)(2012) a011171. [7] H.Z. Shen, Q. Zhou, X.J. Pan, Z.Q. Li, N.E. Yan, Structure of a eukaryotic voltagegated sodium channel at near-atomic resolution, Science 355(6328)(2017) eaal4326. [8] J.R. Werber, C.O. Osuji, M. Elimelech, Erratum:Materials for next-generation desalination and water purification membranes, Nat. Rev. Mater.(2016)16037. [9] M. Padaki, R. Surya Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M.A. Kassim, N. Hilal, A.F. Ismail, Membrane technology enhancement in oil-water separation. A review, Desalination 357(2015)197-207. [10] R.P. Lively, D.S. Sholl, From water to organics in membrane separations, Nat. Mater. 16(3)(2017)276-279. [11] W. Lu, Z. Yuan, Y. Zhao, H. Zhang, H. Zhang, X. Li, Porous membranes in secondary battery technologies, Chem. Soc. Rev. 46(8)(2017)2199-2236. [12] P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements, Nat. Rev. Mater. 5(7)(2020)517-538. [13] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335(6067)(2012)442-444. [14] G.P. Liu, W.Q. Jin, N.P. Xu, Graphene-based membranes, Chem. Soc. Rev. 44(15) (2015)5016-5030. [15] S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nat. Nanotechnol. 10(5)(2015)459-464. [16] R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Ion selectivity of graphene nanopores, Nat. Commun. 7(1)(2016)1-7. [17] L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing, Nature 550(7676)(2017)380-383. [18] J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol. 12(6) (2017)546-550. [19] L.D. Wang, M.S.H. Boutilier, P.R. Kidambi, D. Jang, N.G. Hadjiconstantinou, R. Karnik, Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes, Nat. Nanotechnol. 12(6)(2017)509-522. [20] M. Zhang, K. Guan, Y. Ji, G. Liu, W. Jin, N. Xu, Controllable ion transport by surface-charged graphene oxide membrane, Nat. Commun. 10(1)(2019)1253. [21] Q.W. Gao, Y.M. Zhang, S.T. Xu, A. Laaksonen, Y.D. Zhu, X.Y. Ji, X.H. Lu, Physicochemical properties and structure of fluid at nano-/micro-interface: Progress in simulation and experimental study, Green Energy Environ. 5(3) (2020)274-285. [22] Q.W. Gao, Y.D. Zhu, Y. Ruan, Y.M. Zhang, W. Zhu, X.H. Lu, L.H. Lu, Effect of adsorbed alcohol layers on the behavior of water molecules confined in a graphene nanoslit:A molecular dynamics study, Langmuir 33(42)(2017) 11467-11474. [23] J. Zhao, G. He, S. Huang, L.F. Villalobos, M. Dakhchoune, H. Bassas, K.V. Agrawal, Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation, Sci. Adv. 5(1)(2019) eaav1851. [24] R. Epsztein, R.M. DuChanois, C.L. Ritt, A. Noy, M. Elimelech, Towards singlespecies selectivity of membranes with subnanometre pores, Nat. Nanotechnol. 15(6)(2020)426-436. [25] Q. Shao, J. Zhou, L.H. Lu, X.H. Lu, Y.D. Zhu, S.Y. Jiang, Anomalous hydration shell order of na+ and K+ inside carbon nanotubes, Nano Lett. 9(3)(2009)989-994. [26] C.F. Liu, F.F. Min, L.Y. Liu, J. Chen, Hydration properties of alkali and alkaline earth metal ions in aqueous solution:A molecular dynamics study, Chem. Phys. Lett. 727(2019)31-37. [27] J. Peng, D. Cao, Z. He, J. Guo, P. Hapala, R. Ma, B. Cheng, J. Chen, W.J. Xie, X.Z. Li, P. Jelínek, L.M. Xu, Y.Q. Gao, E.G. Wang, Y. Jiang, The effect of hydration number on the interfacial transport of sodium ions, Nature 557(7707)(2018)701-705. [28] Y.M. Zhang, Y.D. Zhu, A.R. Wang, Q.W. Gao, Y. Qin, Y.J. Chen, X.H. Lu, Progress in molecular-simulation-based research on the effects of interface-induced fluid microstructures on flow resistance, Chin. J. Chem. Eng. 27(6)(2019)1403-1415. [29] L.Y. Qing, J.B. Tao, H.P. Yu, P. Jiang, C.Z. Qiao, S.L. Zhao, H.L. Liu, A molecular model for ion dehydration in confined water, AIChE J. 66(6)(2020) e16938. [30] S.B. Sahu, M. Zwolak, Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores, Nanoscale 9(32)(2017) 11424-11428. [31] S.B. Sahu, M. di Ventra, M. Zwolak, Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores, Nano Lett. 17(8) (2017)4719-4724. [32] K.E. Gubbins, J.D. Moore, Molecular modeling of matter:Impact and prospects in engineering, Ind. Eng. Chem. Res. 49(7)(2010)3026-3046. [33] J.C. Palmer, P.G. Debenedetti, Recent advances in molecular simulation:A chemical engineering perspective, AIChE J. 61(2)(2015)370-383. [34] Y.M. Li, C. Chang, Z. Zhu, L. Sun, C.H. Fan, Terahertz wave enhances permeability of the voltage-gated calcium channel, J. Am. Chem. Soc. 143(11) (2021)4311-4318. [35] Y.F. Zhou, J.H. Morais-Cabral, A. Kaufman, R. MacKinnon, Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0Å resolution, Nature 414(6859)(2001)43-48. [36] J. Payandeh, T. Scheuer, N. Zheng, W.A. Catterall, The crystal structure of a voltage-gated sodium channel, Nature 475(7356)(2011)353-358. [37] D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12(7)(2012)3602-3608. [38] D. Cohen-Tanugi, L.C. Lin, J.C. Grossman, Multilayer nanoporous graphene membranes for water desalination, Nano Lett. 16(2)(2016)1027-1033. [39] Z.J. He, J. Zhou, X.H. Lu, B. Corry, Bioinspired graphene nanopores with voltagetunable ion selectivity for Na+ and K+, ACS Nano 7(11)(2013)10148-10157. [40] R. García-Fandiño, M.S. Sansom, Designing biomimetic pores based on carbon nanotubes, PNAS 109(18)(2012)6939-6944. [41] B. Corry, Water and ion transport through functionalised carbon nanotubes: Implications for desalination technology, Energy Environ. Sci. 4(3)(2011)751. [42] R.N. Zhang, Y.L. Su, X.T. Zhao, Y.F. Li, J.J. Zhao, Z.Y. Jiang, A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly (ethylene imine), J. Membr. Sci. 470(2014)9-17. [43] T. Xu, M.A. Shehzad, M.A. Shehzad, D. Yu, Q. Li, B. Wu, X. Ren, L. Ge, T. Xu, Highly cation permselective metal-organic framework membranes with leaflike morphology, ChemSusChem 12(12)(2019)2593-2597. [44] Y. Li, X. Yue, G. Huang, M. Wang, Q. Zhang, C. Wang, H. Yi, S. Wang, Li+ selectivity of carboxylate graphene nanopores inspired by electric field and nanoconfinement, Small (2021) e2006704. [45] Y.D. Zhu, Y. Ruan, Y.M. Zhang, Y.J. Chen, X.H. Lu, L.H. Lu, Mg2+-channel-inspired nanopores for Mg2+/Li+ separation:The effect of coordination on the ionic hydration microstructures, Langmuir 33(36)(2017)9201-9210. [46] Y.J. Chen, Y.D. Zhu, Y. Ruan, N.N. Zhao, W. Liu, W. Zhuang, X.H. Lu, Molecular insights into multilayer 18-crown-6-like graphene nanopores for K+/Na+ separation:A molecular dynamics study, Carbon 144(2019)32-42. [47] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS:Fast, flexible, and free, J. Comput. Chem. 26(16)(2005)1701-1718. [48] W. Humphrey, A. Dalke, K. Schulten, VMD:Visual molecular dynamics, J. Mol. Graph. 14(1)(1996)33-38. [49] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118(45)(1996)11225-11236. [50] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91(24)(1987)6269-6271. [51] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals:A new molecular dynamics method, J. Appl. Phys. 52(12)(1981)7182-7190. [52] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys. 126(1)(2007). [53] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103(19)(1995)8577-8593. [54] Y. Kang, Z. Zhang, H. Shi, J. Zhang, L. Liang, Q. Wang, H. Ågren, Y. Tu, Na+and K+ ion selectivity by size-controlled biomimetic graphene nanopores, Nanoscale 6(18)(2014)10666-10672. [55] Y.D. Zhu, Y. Ruan, X.M. Wu, X.H. Lu, Y.M. Zhang, L.H. Lu, Electric fieldresponsive nanopores with ion selectivity:Controlling based on transport resistance, Chem. Eng. Technol. 39(5)(2016)993-997. [56] M. Wang, W.H. Shen, S.Y. Ding, X. Wang, Z. Wang, Y.G. Wang, F. Liu, A coupled effect of dehydration and electrostatic interactions on selective ion transport through charged nanochannels, Nanoscale 10(39)(2018)18821-18828. [57] K. Gong, T.M. Fang, T. Wan, Y.G. Yan, W. Li, J. Zhang, Voltage-gated multilayer graphene nanochannel for K+/Na+ separation:A molecular dynamics study, J. Mol. Liq. 317(2020)114025. [58] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff:The trade-off between membrane permeability and selectivity, Science 356(6343)(2017)1138-1148. [59] Y.J. Zhang, Y.X. Xu, J.B. Xu, C. Yang, Computational screening of zeolites for C3H7Cl/C3H5Cl separation and a conformation based separation mechanism, Chem. Eng. Sci. 203(2019)212-219. [60] I. Kh Kaufman, P.E. McClintock, R.S. Eisenberg, Coulomb blockade model of permeation and selectivity in biological ion channels, New J. Phys. 17(8)(2015) 083021. [61] M. Krems, M. di Ventra, Ionic Coulomb blockade in nanopores, J. Phys.:Condens. Matter 25(6)(2013)065101. [62] Y. Ruan, Y.D. Zhu, Y.M. Zhang, Q.W. Gao, X.H. Lu, L.H. Lu, Molecular dynamics study of Mg2+/Li+ separation via biomimetic graphene-based nanopores:The role of dehydration in second shell, Langmuir 32(51)(2016)13778-13786. [63] Y.D. Zhu, Y. Ruan, Y.M. Zhang, L.H. Lu, X.H. Lu, ChemInform abstract: Nanomaterial-oriented molecular simulations of ion behaviour in aqueous solution under nanoconfinement, ChemInform 47(45)(2016)784-798. [64] N.N. Zhao, J.W. Deng, Y.D. Zhu, Y.J. Chen, Y. Qin, Y. Ruan, Y.M. Zhang, Q.W. Gao, X.H. Lu, Atomistic insights into the effects of carbonyl oxygens in functionalized graphene nanopores on Ca2+/Na+ sieving, Carbon 164(2020) 305-316. [65] J. Zhou, X.H. Lu, Y.R. Wang, J. Shi, Molecular dynamics study on ionic hydration, Fluid Phase Equilib. 194-197(2002)257-270. [66] H. Li, J.S. Francisco, X.C. Zeng, Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels, PNAS 112(35)(2015) 10851-10856. [67] Y.M. Zhang, W. Zhu, J.H. Li, Y.D. Zhu, A.R. Wang, X.H. Lu, W. Li, Y.J. Shi, Effects of ionic hydration and hydrogen bonding on flow resistance of ionic aqueous solutions confined in molybdenum disulfide nanoslits:Insights from molecular dynamics simulations, Fluid Phase Equilib. 489(2019)23-29. [68] Y.J. Fu, S.H. Su, N. Zhang, Y.H. Wang, X. Guo, J.M. Xue, Dehydration-determined ion selectivity of graphene subnanopores, ACS Appl. Mater. Interfaces 12(21) (2020)24281-24288. [69] A. Luzar, D. Chandler, Hydrogen-bond kinetics in liquid water, Nature 379(6560)(1996)55-57. [70] Y.M. Zhang, Y.D. Zhu, Z.R. Li, Y. Ruan, L.C. Li, L.H. Lu, X.H. Lu, Temperaturedependent structural properties of water molecules confined in TiO2 nanoslits: Insights from molecular dynamics simulations, Fluid Phase Equilibria 430(2016)169-177. [71] Y.D. Zhu, Y.M. Zhang, Y.J. Shi, X.H. Lu, J.H. Li, L.H. Lu, Lubrication behavior of water molecules confined in TiO2 nanoslits:A molecular dynamics study, J. Chem. Eng. Data 61(12)(2016)4023-4030. [72] Y. Qin, N.N. Zhao, Y.D. Zhu, Y.M. Zhang, Q.W. Gao, Z.Y. Dai, Y.J. You, X.H. Lu, Molecular insights into the microstructure of ethanol/water binary mixtures confined within typical 2D nanoslits:The role of the adsorbed layers induced by different solid surfaces, Fluid Phase Equilib. 509(2020)112452. [73] Y.M. Zhang, Y.J. You, Q.W. Gao, C. Zhang, S.S. Wang, Y. Qin, Y.D. Zhu, X.H. Lu, Molecular insight into flow resistance of choline chloride/urea confined in ionic model nanoslits, Fluid Phase Equilib. 533(2021)112934. |