[1] G. Liu, W. Jin, N. Xu, Two-dimensional-material membranes: A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55(43) (2016) 13384–13397. [2] Y.L. Ying, Y.F. Yang, W. Ying, X.S. Peng, Two-dimensional materials for novel liquid separation membranes, Nanotechnology 27(33) (2016) 332001. [3] W. Wang, Y.Y. Wei, J. Fan, J.H. Cai, Z. Lu, L. Ding, H.H. Wang, Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications, Front. Chem. Sci. Eng. 15(4) (2021) 793–819. [4] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1) (2010) 228–240. [5] J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M. Tascón, Graphene oxide dispersions in organic solvents, Langmuir 24(19) (2008) 10560–10564. [6] M. Hu, B.X. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol. 47(8) (2013) 3715–3723. [7] C.H. Tsou, Q.F. An, S. Lo, M. De Guzman, W.S. Hung, C.C. Hu, K.R. Lee, J.Y. Lai, Effect of microstructure of graphene oxide fabricated through different selfassembly techniques on 1-butanol dehydration, J. Membr. Sci. 477(2015) 93–100. [8] H.W. Kim, H.W. Yoon, S.M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, J.Y. Choi, H.B. Park, Selective gas transport through fewlayered graphene and graphene oxide membranes, Science 342(6154) (2013) 91–95. [9] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335(6067) (2012) 442–444. [10] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A. K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(6172) (2014) 752–754. [11] S.X. Zheng, Q.S. Tu, J.J. Urban, S.F. Li, B.X. Mi, Swelling of graphene oxide membranes in aqueous solution: Characterization of interlayer spacing and insight into water transport mechanisms, ACS Nano 11(6) (2017) 6440–6450. [12] J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol. 12(6) (2017) 546–550. [13] W.B. Li, W.F. Wu, Z.J. Li, Controlling interlayer spacing of graphene oxide membranes by external pressure regulation, ACS Nano 12(9) (2018) 9309–9317. [14] W.S. Hung, C.H. Tsou, M. de Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26(9) (2014) 2983–2990. [15] K.H. Thebo, X.T. Qian, Q. Zhang, L. Chen, H.M. Cheng, W.C. Ren, Highly stable graphene-oxide-based membranes with superior permeability, Nat. Commun. 9(1) (2018) 1486. [16] L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing, Nature 550(7676) (2017) 380–383. [17] F. Baskoro, C.B. Wong, S.R. Kumar, C.W. Chang, C.H. Chen, D. Chen, S.J. Lue, Graphene oxide-cation interaction: Inter-layer spacing and zeta potential changes in response to various salt solutions, J. Membr. Sci. 554(2018) 253–263. [18] L. Huang, S.T. Huang, S.R. Venna, H.Q. Lin, Rightsizing nanochannels in reduced graphene oxide membranes by solvating for dye desalination, Environ. Sci. Technol. 52(21) (2018) 12649–12655. [19] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater. 23(29) (2013) 3693–3700. [20] H.Y. Liu, H.T. Wang, X.W. Zhang, Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification, Adv. Mater. 27(2) (2015) 249–254. [21] Y.H. Chang, Y.D. Shen, D.B. Kong, J. Ning, Z.C. Xiao, J.X. Liang, L.J. Zhi, Fabrication of the reduced preoxidized graphene-based nanofiltration membranes with tunable porosity and good performance, RSC Adv. 7(5) (2017) 2544–2549. [22] J.X. Pei, X.T. Zhang, L. Huang, H.F. Jiang, X.J. Hu, Fabrication of reduced graphene oxide membranes for highly efficient water desalination, RSC Adv. 6(104) (2016) 101948–101952. [23] Y.H. Xi, Z. Liu, J. Ji, Y. Wang, Y. Faraj, Y. Zhu, R. Xie, X.J. Ju, W. Wang, X. Lu, L.Y. Chu, Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions, J. Membr. Sci. 550(2018) 208–218. [24] Y. Li, W. Zhao, M. Weyland, S. Yuan, Y. Xia, H.Y. Liu, M.P. Jian, J.D. Yang, C.D. Easton, C. Selomulya, X.W. Zhang, Thermally reduced nanoporous graphene oxide membrane for desalination, Environ. Sci. Technol. 53(14) (2019) 8314–8323. [25] Y. Li, S. Yuan, Y. Xia, W. Zhao, C.D. Easton, C. Selomulya, X. Zhang, Mild annealing reduced graphene oxide membrane for nanofiltration, J. Membr. Sci. 601(2020) 117900. [26] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3(2) (2008) 101–105. [27] Y.H. Xi, Z. Liu, Q.C. Liao, R. Xie, X.J. Ju, W. Wang, Y. Faraj, L.Y. Chu, Effect of oxidized-group-supported lamellar distance on stability of graphene-based membranes in aqueous solutions, Ind. Eng. Chem. Res. 57(29) (2018) 9439–9447. [28] Y. Kang, R.S. Qiu, M.P. Jian, P.Y. Wang, Y. Xia, B. Motevalli, W. Zhao, Z.M. Tian, J. Z. Liu, H.T. Wang, H.Y. Liu, X.W. Zhang, The role of nanowrinkles in mass transport across graphene-based membranes, Adv. Funct. Mater. 30(32) (2020) 2003159. [29] E. Yang, A.B. de Alayande, C.M. Kim, J.H. Song, I.S. Kim, Laminar reduced graphene oxide membrane modified with silver nanoparticle-polydopamine for water/ion separation and biofouling resistance enhancement, Desalination 426(2018) 21–31. [30] E. Yang, M.H. Ham, H.B. Park, C.M. Kim, J.H. Song, I.S. Kim, Tunable semipermeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer, J. Membr. Sci. 547(2018) 73–79. [31] X.F. Chen, M.H. Qiu, H. Ding, K.Y. Fu, Y.Q. Fan, A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification, Nanoscale 8(10) (2016) 5696–5705. [32] S. Yuan, Y. Li, Y. Xia, Y. Kang, J. Yang, M.H. Uddin, H. Liu, C. Selomulya, X. Zhang, Minimizing non-selective nanowrinkles of reduced graphene oxide laminar membranes for enhanced NaCl rejection, Environ. Sci. Technol. Lett. 7(4) (2020) 273–279. [33] S. Yuan, Y. Li, Y. Xia, C. Selomulya, X. Zhang, Stable cation-controlled reduced graphene oxide membranes for improved NaCl rejection, J. Membr. Sci. 621(2021) 118995. [34] H. Li, Z.N. Song, X.J. Zhang, Y. Huang, S.G. Li, Y.T. Mao, H.J. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation, Science 342(6154) (2013) 95–98. [35] Q. Yang, Y. Su, C. Chi, C.T. Cherian, K. Huang, V.G. Kravets, F.C. Wang, J.C. Zhang, A. Pratt, A.N. Grigorenko, F. Guinea, A.K. Geim, R.R. Nair, Ultrathin graphenebased membrane with precise molecular sieving and ultrafast solvent permeation, Nat. Mater. 16(12) (2017) 1198–1202. [36] C.L. Ritt, J.R. Werber, A. Deshmukh, M. Elimelech, Monte Carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: Implications for permeability and selectivity, Environ. Sci. Technol. 53(11) (2019) 6214–6224. [37] F. Zhou, H.N. Tien, Q. Dong, W.L. Xu, B. Sengupta, S. Zha, J. Jiang, D. Behera, S. Li, M. Yu, Novel carbon-based separation membranes composed of integrated zero-and one-dimensional nanomaterials, J. Mater. Chem. A 8(3) (2020) 1084–1090. [38] Y. Li, L. Li, Z.X. Chen, J. Zhang, L. Gong, Y.X. Wang, H.Q. Zhao, Y. Mu, Carbonateactivated hydrogen peroxide oxidation process for azo dye decolorization: process, kinetics, and mechanisms, Chemosphere 192(2018) 372–378. [39] T. Palaniselvam, M.O. Valappil, R. Illathvalappil, S. Kurungot, Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping, Energy Environ. Sci. 7(3) (2014) 1059–1067. [40] W.T. Wang, E. Eftekhari, G.S. Zhu, X.W. Zhang, Z.F. Yan, Q. Li, Graphene oxide membranes with tunable permeability due to embedded carbon dots, Chem. Commun. 50(86) (2014) 13089–13092. [41] H.M. Zhao, Y.Y. Chang, M. Liu, S. Gao, H.T. Yu, X. Quan, A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots, Chem. Commun. 49(3) (2013) 234–236. [42] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8(4) (2013) 235–246. [43] R.L.G. Lecaros, M.E. Bismonte, B.T. Doma Jr, W.S. Hung Jr, C.C. Hu Jr, H.A. Tsai Jr, S.H. Huang Jr, K.R. Lee Jr, J.Y. Lai Jr, Alcohol dehydration performance of pervaporation composite membranes with reduced graphene oxide and graphene quantum dots homostructured filler, Carbon 162(2020) 318–327. [44] W.L. Xu, C. Fang, F.L. Zhou, Z.N. Song, Q.L. Liu, R. Qiao, M. Yu, Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification, Nano Lett. 17(5) (2017) 2928–2933. [45] H.G. Zhang, X. Quan, S. Chen, X.F. Fan, G.L. Wei, H.T. Yu, Combined effects of surface charge and pore size on Co-enhanced permeability and ion selectivity through RGO-OCNT nanofiltration membranes, Environ. Sci. Technol. 52(8) (2018) 4827–4834. [46] M. Zhang, J. Sun, Y. Mao, G. Liu, W. Jin, Effect of substrate on formation and nanofiltration performance of graphene oxide membranes, J. Membr. Sci. 574(2019) 196–204. [47] D.W. Kim, J. Choi, D. Kim, H.T. Jung, Enhanced water permeation based on nanoporous multilayer graphene membranes: The role of pore size and density, J. Mater. Chem. A 4(45) (2016) 17773–17781. [48] X.L. Xu, F.W. Lin, Y. Du, X. Zhang, J. Wu, Z.K. Xu, Graphene oxide nanofiltration membranes stabilized by cationic porphyrin for high salt rejection, ACS Appl. Mater. Interfaces 8(20) (2016) 12588–12593. [49] J. Zhu, J. Wang, A.A. Uliana, M. Tian, Y. Zhang, Y. Zhang, A. Volodin, K. Simoens, S. Yuan, J. Li, J. Lin, K. Bernaerts, B. Van der Bruggen, Mussel-inspired architecture of high-flux loose nanofiltration membrane functionalized with antibacterial reduced graphene oxide-copper nanocomposites, ACS Appl. Mater. Interfaces 9(34) (2017) 28990–29001. [50] M. Fathizadeh, H.N. Tien, K. Khivantsev, J.T. Chen, M. Yu, Printing ultrathin graphene oxide nanofiltration membranes for water purification, J. Mater. Chem. A 5(39) (2017) 20860–20866. [51] Y. Han, Y. Jiang, C. Gao, High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes, ACS Appl. Mater. Interfaces 7(15) (2015) 8147–8155. [52] X.P. Li, C.W. Zhao, M. Yang, B. Yang, D.Y. Hou, T. Wang, Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities, Appl. Surf. Sci. 419(2017) 418–428. [53] C. Hu, Z. Liu, X. Lu, J. Sun, H. Liu, J. Qu, Enhancement of the Donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane, J. Mater. Chem. A 6(11) (2018) 4737–4745. [54] P. Zhang, J.L. Gong, G.M. Zeng, B. Song, W. Cao, H.Y. Liu, S.Y. Huan, P. Peng, Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure, J. Membr. Sci. 574(2019) 112–123. |