[1] Y. Li, L. Xu, H. Liu, Graphdiyne and graphyne:From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8) (2014) 2572-2586. [2] K.S. Novoselov, V.I. Fal'ko, L. Colombo, et al., A roadmap for graphene, Nature 490(7419) (2012) 192-200. [3] Q. Zhang, J.Q. Huang, W.Z. Qian, et al., The road for nanomaterials industry:A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage, Small 9(8) (2013) 1237-1265. [4] M.F. De Volder, S.H. Tawfick, R.H. Baughman, et al., Carbon nanotubes:Present and future commercial applications, Science 339(6119) (2013) 535-539. [5] V. Chabot, D. Higgins, A. Yu, et al., A review of graphene and graphene oxide sponge:Material synthesis and applications to energy and the environment, Energy Environ. Sci. 7(5) (2014) 1564-1596. [6] G. Li, Y. Li, H. Liu, et al., Architecture of graphdiyne nanoscale films, Chem. Commun. 46(19) (2010) 3256-3258. [7] C. Huang, S. Zhang, H. Liu, et al., Graphdiyne for high capacity and long-life lithium storage, Nano Energy 11(2015) 481-489. [8] C. Huang, Y. Li, N. Wang, et al., Progress in research into 2D graphdiyne-based materials, Chem. Rev. 118(16) (2018) 7744-7803. [9] Y. Xue, B. Huang, Y. Yi, et al., Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(2018) 1460. [10] Y. Xue, Y. Li, J. Zhang, et al., 2D graphdiyne materials:Challenges and opportunities in energy field, Sci. China Chem. 61(7) (2018) 765-786. [11] D. Vuono, E. Catizzone, A. Aloise, et al., Modelling of adsorption of textile dyes over multi-walled carbon nanotubes:Equilibrium and kinetic, Chin. J. Chem. Eng. 25(4) (2017) 523-532. [12] T. Esfandiyari, N. Nasirizadeh, M. Dehghani, et al., Graphene oxide based carbon composite as adsorbent for Hg removal:Preparation, characterization, kinetics and isotherm studies, Chin. J. Chem. Eng. 25(9) (2017) 1170-1175. [13] H. Yu, Y. Xue, L. Hui, et al., Efficient hydrogen production on a 3D flexible heterojunction material, Adv. Mater. 30(21) (2018) e1707082. [14] H. Shang, Z. Zuo, L. Li, et al., Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes, Angew. Chem. Int. Ed. Engl. 57(3) (2018) 774-778. [15] N. Wang, J. He, Z. Tu, et al., Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage, Angew. Chem. Int. Ed. Engl. 56(36) (2017) 10740-10745. [16] J. He, N. Wang, Z. Cui, et al., Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries, Nat. Commun. 8(1) (2017) 1172. [17] F. Darkrim Lamari, P. Malbrunot, G.P. Tartaglia, Review of hydrogen storage by adsorption in carbon nanotubes, Int. J. Hydrog. Energy 27(2) (2002) 193-202. [18] N.M. Mubarak, J.N. Sahu, E.C. Abdullah, et al., Removal of heavy metals from wastewater using carbon nanotubes, Sep. Purif. Technol. 43(4) (2014) 311-338. [19] S. Vellaichamy, K. Palanivelu, Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture, J. Hazard. Mater. 185(2-3) (2011) 1131-1139. [20] H. Chen, J. Li, D. Shao, et al., Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution, Chem. Eng. J. 210(2012) 475-481. [21] T. Wu, M. Chen, L. Zhang, et al., Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance, J. Mater. Chem. A 1(26) (2013) 7612-7621. [22] P. Le Cloirec, Adsorption onto activated carbon fiber cloth and electrothermal desorption of volatile organic compound (VOCs):A specific review, Chin. J. Chem. Eng. 20(3) (2012) 461-468. [23] Q. Wang, J. Yan, Z.J. Fan, Carbon materials for high volumetric performance supercapacitors:Design, progress, challenges and opportunities, Energy Environ. Sci. 9(3) (2016) 729-762. [24] B. Li, F. Dai, Q.F. Xiao, et al., Nitrogen-doped activated carbon for a high energy hybrid supercapacitor, Energy Environ. Sci. 9(1) (2016) 102-106. [25] L. Zhang, R. Zhou, X. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem. 20(29) (2010) 5983-5992. [26] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38(9) (2009) 2520-2531. [27] Y. Chen, X. Zhang, D. Zhang, et al., High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes, Carbon 49(2) (2011) 573-580. [28] Y. Li, M. van Zijll, S. Chiang, et al., KOH modified graphene nanosheets for supercapacitor electrodes, J. Power Sources 196(14) (2011) 6003-6006. [29] H.M. Jeong, J.W. Lee, W.H. Shin, et al., Nitrogen-doped graphene for highperformance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett. 11(6) (2011) 2472-2477. [30] Y.M. Li, Y.S. Hu, H. Li, et al., A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries, J. Mater. Chem. A 4(1) (2016) 96-104. [31] V.D. Punetha, S. Rana, H.J. Yoo, et al., Functionalization of carbon nanomaterials for advanced polymer nanocomposites:A comparison study between CNT and graphene, Prog. Polym. Sci. 67(2017) 1-47. [32] Y. Lei, F. Chen, Y. Luo, et al., Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal, J. Mater. Sci. 49(12) (2014) 4236-4245. [33] J. Hu, Z. Kang, F. Li, et al., Graphene with three-dimensional architecture for high performance supercapacitor, Carbon 67(2014) 221-229. [34] S.P. Teong, A.Y.H. Chua, S. Deng, et al., Direct vinylation of natural alcohols and derivatives with calcium carbide, Green Chem. 19(7) (2017) 1659-1662. [35] Y. Yu, W. Huang, Y. Chen, et al., Calcium carbide as the acetylide source:Transition-metal-free synthesis of substituted pyrazoles via[1,5] -sigmatropic rearrangements, Green Chem. 18(24) (2016) 6445-6449. [36] R. Matake, Y. Adachi, H. Matsubara, Synthesis of vinyl ethers of alcohols using calcium carbide under superbasic catalytic conditions (KOH/DMSO), Green Chem. 18(9) (2016) 2614-2618. [37] K.S. Rodygin, V.P. Ananikov, An efficient metal-free pathway to vinyl thioesters with calcium carbide as the acetylene source, Green Chem. 18(2) (2016) 482-486. [38] Y. Xie, Q. Huang, B. Huang, Preparation of high purity carbon nanospheres by the chemical reaction of calcium carbide and oxalic acid, Carbon 47(9) (2009) 2292-2295. [39] L. Zheng, Y. Wang, X. Wang, et al., The effects of surface modification on the supercapacitive behaviors of carbon derived from calcium carbide, J. Mater. Sci. 45(22) (2010) 6030-6037. [40] Y. Xie, Q. Huang, B. Huang, Chemical reactions between calcium carbide and chlorohydrocarbon used for the synthesis of carbon spheres containing wellordered graphite, Carbon 48(7) (2010) 2023-2029. [41] K. Zhang, S. Tao, X. Xu, et al., Preparation of mesoporous carbon materials through mechanochemical reaction of calcium carbide and transition metal chlorides, Ind. Eng. Chem. Res. 57(18) (2018) 6180-6188. [42] Y. Li, Q. Liu, W. Li, et al., Synthesis and supercapacitor application of alkynyl carbon materials derived from CaC2 and polyhalogenated hydrocarbons by interfacial mechanochemical reactions, ACS Appl. Mater. Inter. 9(4) (2017) 3895-3901. [43] Q. Liu, L. Cheng, X. Xu, et al., Greatly enhanced reactivity of CaC2 with perchloro-hydrocarbons in a stirring ball mill for the manufacture of alkynyl carbon materials, Chem. Eng. Process. 124(2018) 261-268. [44] Y. Li, W. Li, Q. Liu, et al., Alkynyl carbon materials as novel and efficient sorbents for the adsorption of mercury(II) from wastewater, J. Environ. Sci. (China) 68(2018) 169-176. [45] Y. Xu, C. Li, Z. Wang, Preparing of chlorinated rubber by using semi-aqueous process and hydrochloric acid as a chlorine source, J. Beijing Univ. Chem. Technol 32(6) (2005) 12-14. [46] D. Yang, S. Li, W. Fu, et al., Pyrolysis GC-MS of chlorinated natural rubber, J. Appl. Polym. Sci. 87(2) (2002) 199-204. [47] A. Li, H. Song, X. Xu, et al., Greener production process of acetylene and calcium diglyceroxide via mechanochemical reaction of CaC2 and glycerol, ACS Sustain. Chem. Eng. 6(8) (2018) 9560-9565. [48] J. Kano, F. Saito, Correlation of powder characteristics of talc during planetary ball milling with the impact energy of the balls simulated by the particle element method, Powder Technol. 98(2) (1998) 166-170. [49] M. Vásquez, G.J. Cruz, M.G. Olayo, et al., Chlorine dopants in plasma synthesized heteroaromatic polymers, Polymer 47(23) (2006) 7864-7870. [50] I.-Y. Jeon, Y.-R. Shin, G.-J. Sohn, et al., Edge-carboxylated graphene nanosheets via ball milling, Proc. Natl. Acad. Sci. U. S. A. 109(15) (2012) 5588-5593. [51] R.H. Baughman, H. Eckhardt, M. Kertesz, Structure-property predictions for new planar forms of carbon:Layered phases containing sp2 and sp atoms, J. Chem. Phys. 87(11) (1987) 6687-6699. [52] C.L. Yaws, Chemical Properties Handbook, McGraw-Hill Book Co, 1999, USA. [53] Q. Li, Y. Li, Y. Chen, et al., Synthesis of c-graphyne by mechanochemistry and its electronic structure, Carbon 136(2018) 248-254. [54] S.L. James, C.J. Adams, C. Bolm, et al., Mechanochemistry:Opportunities for new and cleaner synthesis, Chem. Soc. Rev. 41(1) (2012) 413-447. [55] N. Asasian, T. Kaghazchi, Sulfurized activated carbons and their mercury adsorption/desorption behavior in aqueous phase, Int. J. Environ. Sci. Technol. 12(8) (2015) 2511-2522. [56] N.M. Bandaru, N. Reta, H. Dalal, et al., Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes, J. Hazard. Mater. 261(2013) 534-541. [57] Q. Wang, J. Yan, T. Wei, et al., Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors, Carbon 60(2013) 481-487. [58] Q. Wang, J. Yan, Y. Wang, et al., Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors, Carbon 67(2014) 119-127. [59] K.X. Wang, Y.G. Wang, Y.R. Wang, et al., Mesoporous carbon nanofibers for supercapacitor application, J. Phys. Chem. C 113(3) (2009) 1093-1097. |