[1] F.Y. Sun, X.M. Wang, X.Y. Li, An innovative membrane bioreactor (MBR) system for simultaneous nitrogen and phosphorus removal, Process Biochem. 48(2013) 1749-1756. [2] L. Egle, H. Rechberger, J. Krampe, M. Zessner, Phosphorus recovery from municipal wastewater:An integrated comparative technological, environmental and economic assessment of P recovery technologies, Sci. Total Environ. 571(2016) 522-542. [3] S. Sengupta, T. Nawaz, J. Beaudry, Nitrogen and phosphorus recovery from wastewater, Curr Pollut. Rep. 1(2015) 155-166. [4] G. Mujtaba, M. Rizwan, K. Lee, Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris, J. Ind. Eng. Chem. 49(2017) 145-151. [5] F.A. Ansari, P. Singh, A. Guldhe, F. Bux, Microalgal cultivation using aquaculture wastewater:Integrated biomass generation and nutrient remediation, Algal Res. 21(2017) 169-177. [6] M.Y. Menetrez, An overview of algae biofuel production and potential environmental impact, Environ. Sci. Technol. 46(2012) 7073-7085. [7] J.K. Pittman, A.P. Dean, O. Osundeko, The potential of sustainable algal biofuel production using wastewater resources, Bioresour. Technol. 102(2011) 17-25. [8] E. Salama, M.B. Kurade, R.A.I. Abou-shanab, M.M. El-dalatony, Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation, Renew. Sust. Energ. Rev. 79(2017) 1189-1211. [9] E.M. Grima, F.G. Acie, A.R. Medina, Y. Chisti, Recovery of microalgal biomass and metabolites:Process options and economics, Biotechnol. Adv. 20(2003) 491-515. [10] A.G. Waghmare, M.K. Salve, J.G. LeBlanc, S.S. Arya, Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa, Bioresour. Bioprocess. 3(2016) 1-11. [11] T. De Baerdemaeker, B. Lemmens, C. Dotremont, J. Fret, L. Roef, K. Goiris, L. Diels, Benchmark study on algae harvesting with backwashable submerged flat panel membranes, Bioresour. Technol. 129(2013) 582-591. [12] L. Marbelia, M. Mulier, D. Vandamme, K. Muylaert, A. Szymczyk, I.F.J. Vankelecom, Polyacrylonitrile membranes for microalgae filtration:Influence of porosity, surface charge and microalgae species on membrane fouling, Algal Res. 19(2016) 128-137. [13] J. Lee, H.-R. Chae, Y.J. Won, K. Lee, C.-H. Lee, H.H. Lee, I.-C. Kim, J. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment, J. Memb. Sci. 448(2013) 223-230. [14] E. Mahmoudi, L.Y. Ng, M.M. Ba-Abbad, A.W. Mohammad, Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates, Chem. Eng. J. 277(2015) 1-10. [15] W.C. Chong, E. Mahmoudi, Y. Tao, C. Hoon, A. Wahab, K. Fakir, Improving performance in algal organic matter filtration using polyvinylidenefluoride-Graphene oxide nanohybrid membranes, Algal Res. 27(2017) 32-42. [16] X. Zhang, M.C.E. Devanadera, F.A. Roddick, L. Fan, M.L.P. Dalida, Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane, Water Res. 103(2016) 391-400. [17] G.T. Ding, Z. Yaakob, M.S. Takriff, J. Salihon, M.S. Abd Rahaman, Biomass production and nutrients removal by a newly-isolated microalgal strain Chlamydomonas sp. in palm oil mill effluent (POME), Int. J. Hydrog. Energy 41(2016) 4888-4895. [18] Y.T. Chung, E. Mahmoudi, A.W. Mohammad, A. Benamor, D. Johnson, N. Hilal, Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control, Desalination. 402(2017) 123-132. [19] K. Katsoufidou, S.G. Yiantsios, A.J. Karabelas, An experimental study of UF membrane fouling by humic acid and sodium alginate solutions:The effect of backwashing on flux recovery, Desalination. 220(2008) 214-227. [20] M.A.E. Moustafa, Effect of the pre-treatment on the performance of MBR, Berghausen WWTP. Germany, Alexandria Eng. J. 50(2011) 197-202. [21] A. Venault, M.R.B. Ballad, Y.T. Huang, Y.H. Liu, C.H. Kao, Y. Chang, Antifouling PVDF membrane prepared by VIPS for microalgae harvesting, Chem. Eng. Sci. 142(2016) 97-111. [22] F. Li, C. Deng, C. Du, B. Yang, Q. Tian, Fouling mechanism and cleanability of ultrafiltration membranes modified with polydopamine-graft-PEG, Water SA 41(2015) 448-456. [23] S. Lorenzen, K. Keiding, M.L. Christensen, The effect of particle surface charge density on filter cake properties during dead-end filtration, Chem. Eng. Sci. 163(2017) 155-166. [24] Z. Rahimi, A.A.L. Zinatizadeh, S. Zinadini, Preparation of high antibiofouling amino functionalized MWCNTs/PES nanocomposite ultrafiltration membrane for application in membrane bioreactor, J. Ind. Eng. Chem. 29(2015) 366-374. [25] K.F. Kamarudin, Z. Yaakob, R. Rajkumar, M.S. Takriff, S.M. Tasirin, Bioremediation of Palm Oil Mill Effluents (POME) using Scenedesmus dimorphus and Chlorella vulgaris, Adv. Sci. Lett. 19(2013) 2914-2918. [26] S. Hongyang, Z. Yalei, Z. Chunmin, Z. Xuefei, L. Jinpeng, Cultivation of Chlorella pyrenoidosa in soybean processing wastewater, Bioresour. Technol. 102(2011) 9884-9890. [27] R.K. Henderson, S.A. Parsons, B. Jefferson, The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae, Water Res. 44(2010) 3617-3624. [28] W.Y. Cheah, T.C. Ling, P.L. Show, J.C. Juan, J.S. Chang, D.J. Lee, Cultivation in wastewaters for energy:A microalgae platform, Appl. Energy 179(2016) 609-625. [29] W. Huang, H. Chu, B. Dong, M. Hu, Y. Yu, A membrane combined process to cope with algae blooms in water, Desalination. 355(2015) 99-109. [30] W.C. Chong, E. Mahmoudi, Y. Tao, M.M. Ba-abbad, Polyvinylidene fluoride membranes with enhanced antibacterial and low fouling properties by incorporating ZnO/rGO composites, Desalin. Water Treat. 20742(2017) 12-21. [31] B. Vatsha, J. Ngila, R. Moutloali, Development of Ag/GO incorporated onto PES membrane with improved anti-fouling property, J. Membr. Sep. Technol. 4(2015) 98-109. [32] M. Xiao, H.J. Shin, Q. Dong, Advances in cultivation and processing techniques for microalgal biodiesel:A review, Korean J. Chem. Eng. 30(2013) 2119-2126. [33] M. Xu, M. Bernards, Z. Hu, Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor, Bioresour. Technol. 153(2014) 383-387. [34] M.E. Martínez, J.M. Jiménez, F. El Yousfi, Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus, Bioresour. Technol. 67(1999) 233-240. [35] Z. Yaakob, K. Fakir, E. Ali, S.R.S. Abdullah, M.S. Takriff, An overview of microalgae as a wastewater treatment, Jordan Int. Energy Conf. 2011-Amman, 2011. [36] D. Cheng, Q. He, Assessment of environmental stresses for enhanced microalgal biofuel production-An overview, Front. Energy Res. 2(2014) 1-8. [37] M. Książyk, M. Asztemborska, R. Steborowski, G. Bystrzejewska-Piotrowska, Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata, Bull. Environ. Contam. Toxicol. 94(2015) 554-558. [38] Y. Yue, X. Li, L. Sigg, M.J.-F. Suter, S. Pillai, R. Behra, K. Schirmer, Interaction of silver nanoparticles with algae and fish cells:a side by side comparison, J. Nanobiotechnology. 15(2017) 1-11. [39] A. Dash, A.P. Singh, B.R. Chaudhary, S.K. Singh, Effect of silver nanoparticles on growth of eukaryotic green algae, Nano-Micro Lett. 4(2012) 158-165. [40] K.J. Kulacki, B.J. Cardinale, Effects of nano-titanium dioxide on freshwater algal population dynamics, PLoS One 7(2012) 1-7. |