[1] S.V. Kuppu, A.R. Jeyaraman, P.K. Guruviah, S. Thambusamy, Preparation and characterizations of PMMA-PVDF based polymer composite electrolyte materials for dye sensitized solar cell, Curr. Appl. Phys. 18(2018) 619-625. [2] A.K. Arof, I.M. Noor, M.H. Buraidah, T.M.W.J. Bandara, M.A. Careem, I. Albinsson, B.E. Mellander, Polyacrylonitrile gel polymer electrolyte based dye sensitized solar cells for a prototype solar panel, Electrochim. Acta 251(2017) 223-234. [3] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353(1991) 737-740. [4] M. Grätzel, Photoelectrochemical cells, Nature. 414(2001) 338-344. [5] A. Hagfeldt, M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 95(1995) 49-68. [6] M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dyesensitized solar cells, J. Photochem. Photobiol. A Chem. 164(2004) 3-14. [7] M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C:Photochem. Rev. 4(2003) 145-153. [8] A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Gratzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science. 334(2011) 629-634. [9] D. Kuang, C. Klein, Z. Zhang, S. Ito, J.-E. Moser, S.M. Zakeeruddin, M. Grätzel, Stable, high-efficiency ionic-liquid-based mesoscopic dye-sensitized solar cells, Small 3(2007) 2094-2102. [10] M. Grätzel, Photovoltaic performance and long-term stability of dye-sensitized mesoscopic solar cells, Comptes Rendus Chim. 9(2006) 578-583. [11] S. Ito, S.M. Zakeeruddin, P. Comte, P. Liska, D. Kuang, M. Grätzel, Bifacial dyesensitized solar cells based on an ionic liquid electrolyte, Nat. Photonics 2(2008) 693-698. [12] Y. Zhao, T. Bostrom, Application of ionic liquids in solar cells and batteries:a review, Curr. Org. Chem. 19(6) (2015) 556-566. [13] J. Bandara, H. Weerasinghe, Solid-state dye-sensitized solar cell with p-type NiO as a hole collector, Sol. Energy Mater. Sol. Cells 85(2005) 385-390. [14] J.E. Kroeze, N. Hirata, L. Schmidt-Mende, C. Orizu, S.D. Ogier, K. Carr, M. Grätzel, J.R. Durrant, Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors, Adv. Funct. Mater. 16(2006) 1832-1838. [15] Y. Guo, H. Lei, L. Xiong, B. Li, G. Fang, An integrated organic-inorganic hole transport layer for efficient and stable perovskite solar cells, J. Mater. Chem. A 6(2018) 2157-2165. [16] J. Nei de Freitas, C. Longo, A.F. Nogueira, M.-A. De Paoli, Solar module using dyesensitized solar cells with a polymer electrolyte, Sol. Energy Mater. Sol. Cells 92(2008) 1110-1114. [17] J. Nei de Freitas, A.F. Nogueira, M.-A. De Paoli, New insights into dye-sensitized solar cells with polymer electrolytes, J. Mater. Chem. 19(2009) 5279. [18] S.Z. Yusof, H.J. Woo, M.A. Careem, A.K. Arof, Gel electrolytes with I-/I3-redox mediator based on methylcellulose for dye-sensitized solar cells, Opt. Mater. 79(2018) 381-389. [19] N. Zebardastan, M.H. Khanmirzaei, S. Ramesh, K. Ramesh, Presence of NaI in PEO/PVdF-HFP blend based gel polymer electrolytes for fabrication of dye-sensitized solar cells, Mater. Sci. Semicond. Process. 66(2017) 144-148. [20] S. Venkatesan, Y.L. Lee, Nanofillers in the electrolytes of dye-sensitized solar cells-A short review, Coord. Chem. Rev. 353(2017) 58-112. [21] T. Xu, J. Li, Ruijuan Gong, Z. Xi, T. Huang, L. Chen, T. Ma, Environmental effects on the ionic conductivity of poly(methyl methacrylate) (PMMA)-based quasi-solid-state electrolyte, Ionics 24(2018) 2621-2629. [22] D.K. Hwang, J.E. Nam, H.J. Jo, S.J. Sung, Quasi-solid state electrolyte for semitransparent bifacial dye sensitized solar cell with over 10% power conversion efficiency, J. Power Sources 361(2017) 87-95. [23] N. Pullanjiyot, D.M. Vidyadharan, S. Swaminathan, Synthesis and electrochemical characterization of physically cross-linked gel electrolyte for QSDSSC application, Mater. Des. 101(2016) 270-276. [24] K. Makhijani, R. Kumar, S.K. Sharma, Biodegradability of blended polymers:A comparison of various properties, Crit. Rev. Environ. Sci. Technol. 45(2015) 1801-1825. [25] J. Fan, L. Li, H.S. Rao, Q.Li. Yang, J. Zhang, H.Y. Chen, D.B. Kuang, C.Y. Sua, A novel metal-organic gel based electrolyte for efficient quasi-solid-state dye-sensitized solar cells, J. Mater. Chem. A 2(2014). [26] K. Kesavan, C.M. Mathew, S. Rajendran, Lithium ion conduction and ion-polymer interaction in poly(vinyl pyrrolidone) based electrolytes blended with different plasticizers, Chin. Chem. Lett. 25(2014) 1428-1434. [27] E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag. 22(1970) 0903-0922. [28] K. Kesavan, C.M. Mathew, S. Rajendran, M. Ulaganathan, Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate, Mater. Sci. Eng. B 184(2014) 26-33. [29] T. Uma, T. Mahalingam, U. Stimming, Conductivity and thermal studies of solid polymer electrolytes prepared by blending polyvinylchloride, polymethylmethacrylate and lithium sulfate, Mater. Chem. Phys. 85(2004) 131-136. [30] S. Rajendran, O. Mahendran, T. Mahalingam, Thermal and ionic conductivity studies of plasticized PMMA/PVdF blend polymer electrolytes, Eur. Polym. J. 38(2002) 49-55. [31] S. Rajendran, M. Sivakumar, R. Subadevi, M. Nirmala, Characterization of PVA-PVdF based solid polymer blend electrolytes, Phys. B Condens. Matter 348(2004) 73-78. [32] I.S. Elashmawi, N.A. Hakeem, Effect of PMMA addition on characterization and morphology of PVDF, Polym. Eng. Sci. 48(2008) 895-901. [33] B.C.F. Wong, A. Ahmad, S.A. Hanifah, N.H. Hassan, Effects of ethylene glycol dimethacrylate as cross-linker in ionic liquid gel polymer electrolyte based on poly(glycidyl methacrylate), Int. J. Polym. Anal. Charact. 21(2016) 95-103. [34] E. Aram, M. Ehsani, H.A. Khonakdar, Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte, Thermochim. Acta 615(2015) 61-67. [35] R. Surender, A. Mahendran, A. Thamaraichelvan, S. Alam, C.T. Vijayakumar, Model free kinetics-Thermal degradation of bisphenol A based polybismaleimide-cloisite 15a nanocomposites, Thermochim. Acta 562(2013) 11-21. [36] Y.P. Mahant, S.B. Kondawar, D.V. Nandanwar, P. Koinkar, Poly(methyl methacrylate) reinforced poly(vinylidene fluoride) composites electrospun nanofibrous polymer electrolytes as potential separator for lithium ion batteries, Materials for Renewable and Sustainable Energy 7(2018) 5. [37] M.K. Trivedi, A.B. Dahryn Trivedi, G.N. Gunin Saikia, Physical and structural characterization of biofield treated imidazole derivatives, Nat. Prod. Chem. Res. 03(2015), 1000187. [38] P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Structural, electrical and optical characterization of pure and doped poly (vinyl alcohol) (PVA) polymer electrolyte films, Int. J. Polym. Mater. 56(2007) 579-591. [39] O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite, Mater. Sci. Mater. Electron. 26(2015) 5303-5309. [40] V. Aravindan, P. Vicraman, T. Premkumar, Polyvinylidene fluoride-hexafluoro propylene (PVdF-HEP) based composite polymer electrolyte containing LiPF3(CF3CF2)3, J. Non-Cryst. Solids 354(2008) 3451-3457. [41] J. Theerthagiri, R.A. Senthil, M.H. Buraidah, J. Madhavan, A.K. Arof, Effect of tetrabutylammonium iodide content on PVDF-PMMA polymer blend electrolytes for dye-sensitized solar cells, Ionics 21(2015) 2889-2896. [42] C. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, H. Ardebili, High ion conducting polymer nanocomposite electrolytes using hybrid Nanofillers, Nano Lett. 12(2012) 1152-1156. [43] L.P. Teo, T.S. Tiong, M.H. Buraidah, A.K. Arof, Effect of lithium iodide on the performance of dye sensitized solar cells (DSSC) using poly(ethylene oxide) (PEO)/poly (vinyl alcohol) (PVA) based gel polymer electrolytes, Opt. Mater. 85(2018) 531-537. [44] X. Jin, L. You, Z. Chen, Q. Li, High-efficiency platinum-free quasi-solid-state dyesensitized solar cells from polyaniline (polypyrrole)-carbon nanotube complex tailored conducting gel electrolytes and counter electrodes, Electrochim. Acta 260(2018) 905-911. [45] K.M. Manikandan, A. Yelilarasi, P. Senthamaraikannan, S.S. Saravanakumar, Anish Khan, Abdullah M. Asiri, The conducting polymer electrolyte based on polypyrrole-polyvinyl alcohol and its application in low-cost quasi-solid-state dyesensitized solar cells, J. Solid State Electrochem. 22(2018) 3785-3797. [46] M. Ulaganathan, R. Nithya, S. Rajendran, Surface Analysis Studies on Polymer Electrolyte Membranes Using Scanning Electron Microscope and Atomic Force Microscope, Scanning Electron Microscopy, Dr.Viacheslav Kazmiruk (Ed.), InTech, (2012) ISBN:978-953-51-0092-8. |