[1] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(2011) 359-367. [2] M. Armand, J.M. Tarascon, Building better batteries, Nature 451(2008) 652-657. [3] Y.L. Shan, L. Xu, Y.J. Hu, H. Jiang, C.Z. Li, Internal-diffusion controlled synthesis of V2O5 hollow microspheres for superior lithium-ion full batteries, Chem. Eng. Sci. 200(2019) 38-45. [4] J.L. Liu, C.H. Xu, Z. Chen, S.B. Ni, Z.X. Shen, Progress in aqueous rechargeable batteries, Green Energy & Environment 3(2018) 20-41. [5] R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries, Nat. Energy 3(2018) 267-278. [6] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positiveelectrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144(1997) 1188-1194. [7] L.X. Yuan, Z.H. Wang, W.X. Zhang, X.L. Hu, J.T. Chen, Y.H. Huang, J.B. Goodenough, Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energy Environ. Sci. 4(2011) 269-284. [8] J. Yang, J. Wang, Y. Tang, D. Wang, X. Li, Y. Hu, R. Li, G. Liang, T. Sham, X.L. Sun, LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries:impact of stacked graphene and unfolded graphene, Energy Environ. Sci. 6(2013) 1521-1528. [9] S.K. Martha, J. Grinblat, O. Haik, E. Zinigrad, T. Drezen, J.H. Miners, I. Exnar, A. Kay, B. Markovsky, D. Aurbach, LiMn0.8Fe0.2PO4:An advanced cathode material for rechargeable lithium batteries, Angew. Chem. Int. Ed. 48(2009) 8559-8563. [10] Y.K. Sun, S.M. Oh, H.K. Park, B. Scrosati, Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries, Adv. Mater. 23(2011) 5050-5054. [11] A. Yamada, M. Hosoya, S. Chung, Y. Kudo, K. Hinokuma, K. Liu, Y. Nishi, Olivine-type cathodes achievements and problems, J. Power Sources 119(2003) 232-238. [12] M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, R. Kanno, Comparative kinetic study of olivine LixMPO4 (M=Fe, Mn), J. Electrochem. Soc. 151(2004) A1352. [13] M. Kim, H. Kim, S. Lee, D. Kim, D. Ruan, K. Chung, S. Lee, K. Roh, K. Kim, Synthesis of reduced graphene oxide-modified LiMn0.75Fe0.25PO4 microspheres by saltassisted spray drying for high-performance lithium-ion batteries, Sci. Rep. 6(2016) 26686. [14] W. Liu, P. Gao, Y. Mi, J. Chen, H. Zhou, X. Zhang, Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating-spray drying method for high rate lithium ion batteries, J. Mater. Chem. A 1(2013) 2411-2417. [15] C.W. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode, J. Am. Chem. Soc. 133(2011) 2132-2135. [16] H. Wang, Y. Yang, Y. Liang, L. Cui, H. Casalongue, Y. Li, G. Hong, Y. Cui, H. Dai, LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh rate-performance lithium ion batteries, Angew. Chem. Int. Ed. 123(2011) 7502-7506. [17] R. Hagen, H. Lorrmann, K. Möller, S. Mathur, Electrospun LiFe1-yMnyPO4/C nanofiber composites as self-supporting cathodes in Li-ion batteries, Adv. Energy Mater. 2(2012) 553-559. [18] Z. Chi, W. Zhang, X. Wang, F. Cheng, J. Chen, A. Cao, L. Wan, Accurate surface control of core-shell structured LiMn0.5Fe0.5PO4@C for improved battery performance, J. Mater. Chem. A 2(2014) 17359-17365. [19] L. Liao, H. Wang, H. Guo, P. Zhu, J. Xie, C. Jin, S. Zhang, G. Cao, T. Zhu, X. Zhao, Facile solvothermal synthesis of ultrathin LiFexMn1-xPO4 nanoplates as advanced cathodes with long cycle life and superior rate capability, J. Mater. Chem. A 3(2015) 19368. [20] K. Kisu, E. Iwama, W. Onishi, S. Nakashima, W. Naoi, K. Naoi, Ultrafast nanosphericalsingle-crystalline LiMn0.792Fe0.198Mg0.010PO4solid-solution confined among unbundled interstices of SGCNTs, J. Mater. Chem. A 2(2014) 20789-20798. [21] C. Xu, L. Li, F. Qiu, C. An, Y. Xu, Y. Wang, Y. Wang, L. Jiao, H. Yuan, Graphene oxide assisted facile hydrothermal synthesis of LiMn0.6Fe0.4PO4 nanoparticles as cathode material for lithium ion battery, J. Energy Chemistry 23(2014) 397-402. [22] Y. Deng, C. Yang, K. Zou, X. Qin, Z. Zhao, G. Chen, Recent advances of Mn-rich LiFe1-yMnyPO4(0.5≤ y b 1.0) cathode materials for high energy density lithium ion batteries, Adv. Energy Mater. 7(2017)(1601958). [23] L. Wang, P. Zuo, G. Yin, Y. Ma, X. Cheng, C. Du, Y. Gao, Improved electrochemical performance and capacity fading mechanism of nano-sized LiMn0.9Fe0.1PO4 cathode modified by polyacene coating, J. Mater. Chem. A 3(2015) 1569-1579. [24] L.F. Zhao, T. Tang, W.H. Chen, X.M. Feng, L.W. Mi, Carbon coated ultrasmall anatase TiO2 nanocrystal anchored on N,S-RGO as high-performance anode for sodium ion batteries, Green Energy & Environment 3(2018) 277-285. [25] Y.K. Hou, G.L. Pan, Y.Y. Sun, X.P. Gao, LiMn0.8Fe0.2PO4/carbon nanospheres@Graphene nanoribbons prepared by the biomineralization process as the cathode for lithium-ion batteries, ACS Appl. Mater. Interfaces 10(2018) 16500-16510. [26] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8(2013) 235-246. [27] H.L. Guo, P. Su, X.F. Kang, S.K. Ning, Synthesis and characterization of nitrogendoped graphene hydrogels by hydrothermal route with urea as reducing-doping agents, J. Mater. Chem. A 1(2013) 2248-2255. [28] B. Wang, W. Abdulla, D.L. Wang, X.S. Zhao, A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for highpower lithium ion batteries, Energy Environ. Sci. 8(2015) 869-875. [29] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W. Lau, A.R. Gerson, R. St. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides:Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci. 257(2011) 2717-2730. [30] J. Barker, M.Y. Saidi, J.L. Swoyer, Lithium Iron(II) phospho-olivines prepared by a novel carbothermal reduction method, Electrochem. Solid-State Lett. 6(2003) A53-A55. [31] L. Liang, X. Sun, J. Zhang, L. Hou, J. Sun, Y. Liu, S. Wang, C. Yuan, In situ synthesis of hierarchical core double-Shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries, Adv. Energy Mater. 9(2019) 1802847. [32] Q.Q. Jiang, H.F. Yu, Y.J. Hu, H. Jiang, C.Z. Li, Exposed surface engineering of highvoltage LiNi0.5Co0.2Mn0.3O2 cathode materials enables high-rate and durable Liions batteries, Ind. Eng. Chem. Res. 58(2019) 23099-23105. [33] M. Zhao, Y. Fu, N. Xu, G. Li, M. Wu, X. Gao, High performance LiMnPO4/C prepared by a crystallite size control method, J. Mater. Chem. A 2(2014) 15070-15077. [34] Y. Zhao, L. Peng, B. Liu, G. Yu, Single-crystalline LiFePO4 nanosheets for high-rate Liion batteries, Nano Lett. 14(2014) 2849-2853. [35] H.F. Yu, Y.G. Li, Y.J. Hu, H. Jiang, C.Z. Li, 110th anniversary:concurrently coating and doping high-valence vanadium in nickel-rich lithiated oxides for high-rate and stable lithium-ion batteries, Ind. Eng. Chem. Res. 58(2019) 4108-4115. [36] C.M. Doherty, R.A. Caruso, B.M. Smarsly, P. Adelhelm, C.J. Drummond, Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power Lithium ion batteries, Chem. Mater. 21(2009) 5300-5306. |