[1] M. Fu, C. Li, P. Lu, L. Qu, M. Zhang, Y. Zhou, M. Yu, Y. Fang, A review on selective catalytic reduction of NOx by supported catalysts at 100-300℃-Catalysts, mechanism, kinetics, Catal. Sci. Technol. 4(2014) 14-25. [2] D.A. Pena, B.S. Uphade, P.G. Smirniotis, TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3:I. Evaluation and characterization of first row transition metals, J. Catal. 221(2004) 421-431. [3] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. 1. Adsorption and desorption of the single reaction components, J. Catal. 171(1997) 208-218. [4] X. Tang, J. Hao, H. Yi, J. Li, Low-temperatureSCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts, Catal. Today 126(2007) 406-411. [5] X. Sun, R.T. Guo, J. Liu, Z.T. Fu, S.W. Liu, W.G. Pan, X. Shi, H. Qin, Z.Y. Wang, X.Y. Liu, The enhanced SCR performance of Mn/TiO2 catalyst by Mo modification:Identification of the promotion mechanism, Int. J. Hydrog. Energy 43(2018) 16038-16048. [6] D. Fang, F. He, D. Mei, Z. Zhang, J. Xie, H. Hu, Thermodynamic calculation for the activity and mechanism of Mn/TiO2 catalyst doped transition metals for SCR at low temperature, Catal. Commun. 52(2014) 45-48. [7] S. Luo, W. Zhou, A. Xie, F. Wu, C. Yao, X. Li, S. Zuo, T. Liu, Effect of MnO2 polymorphs structure on the selective catalytic reduction of NOx with NH3 over TiO2-Palygorskite, Chem. Eng. J. 286(2016) 291-299. [8] M. Cheng, B. Jiang, S. Yao, J. Han, S. Zhao, X. Tang, J. Zhang, T. Wang, Mechanism of NH3-SCR reaction for NOx removal from diesel engine exhaust and hydrothermal stability of Cu-Mn/zeolite catalysts, J. Phys. Chem. C 122(2018) 455-464. [9] Q. Yan, S. Chen, L. Qiu, Y. Gao, D. O'Hare, Q. Wang, The synthesis of CuyMnzAl1-zOx mixed oxide as a low-temperature NH3-SCR catalyst with enhanced catalytic performance, Dalton Trans. 47(2018) 2992-3004. [10] S.C. Ma, J. Yao, X. Ma, L. Gao, M. Guo, Removal of SO2 and NOx using microwave swing adsorption over activated carbon carried catalyst, Chem. Eng. Technol. 36(2013) 1217-1224. [11] S.M. Mousavi, A. Niaei, D. Salari, P.N. Panahi, M. Samandari, Modelling and optimization of Mn/activate carbon nanocatalysts for NO reduction:comparison of RSM and ANN techniques, Environ. Technol. 34(2013) 1377-1384. [12] B. Shen, T. Liu, N. Zhao, X. Yang, L. Deng, Iron-dopedMn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3, J. Environ. Sci. 22(2010) 1447-1454. [13] L. Qu, C. Li, G. Zeng, M. Zhang, M. Fu, J. Ma, F. Zhan, D. Luo, Support modification for improving the performance of MnOx-CeOy/γ-Al2O3 in selective catalytic reduction of NO by NH3, Chem. Eng. J. 242(2014) 76-85. [14] J. Zuo, Z. Chen, F. Wang, Y. Yu, L. Wang, X. Li, Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn-Zr mixed oxide catalysts, Ind. Eng. Chem. Res. 53(2014) 2647-2655. [15] X. Yao, T. Kong, L. Chen, S. Ding, F. Yang, L. Dong, Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect, Appl. Surf. Sci. 420(2017) 407-415. [16] K. Zhang, F. Yu, M. Zhu, J. Dan, X. Wang, J. Zhang, B. Dai, Enhanced low temperature NO reduction performance via MnOx-Fe2O3/vermiculite monolithic honeycomb catalysts, Catalysts 8(2018) 100. [17] Z. Fan, J.W. Shi, C. Gao, G. Gao, B. Wang, C. Niu, Rationally designed porous MnOx-FeOx nanoneedles for low-temperature selective catalytic reduction of NOx by NH3, ACS Appl. Mater. Inter. 9(2017) 16117-16127. [18] F. Cao, J. Xiang, S. Su, P. Wang, L. Sun, S. Hu, S. Lei, The activity and characterization of MnOx-CeO2-ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3, Chem. Eng. J. 243(2014) 347-354. [19] Q. Shen, L. Zhang, N. Sun, H. Wang, L. Zhong, C. He, W. Wei, Y. Sun, Hollow MnOxCeO2 mixed oxides as highly efficient catalysts in NO oxidation, Chem. Eng. J. 322(2017) 46-55. [20] G. Qi, R.T. Yang, R. Chang, MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal., B 51(2004) 93-106. [21] F. Gao, X. Tang, H. Yi, S. Zhao, J. Wang, Y. Shi, X. Meng, Novel Co-or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature, Appl. Surf. Sci. 443(2018) 103-113. [22] K.B. Nam, D.W. Kwon, S.C. Hong, DRIFT study on promotion effects of tungstenmodified Mn/Ce/Ti catalysts for the SCR reaction at low-temperature, Appl. Catal. A 542(2017) 55-62. [23] C. Wang, F. Yu, M. Zhu, X. Wang, J. Dan, J. Zhang, P. Cao, B. Dai, Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50-150℃, Chem. Eng. J. 346(2018) 182-192. [24] C. Gennequin, T. Barakat, H. Tidahy, R. Cousin, J.F. Lamonier, A. Aboukaïs, S. Siffert, Use and observation of the hydrotalcite "memory effect" for VOC oxidation, Catal. Today 157(2010) 191-197. [25] Y. Zhao, X. Jia, G. Chen, L. Shang, G.I. Waterhouse, L.Z. Wu, C.H. Tung, D. O'Hare, T. Zhang, Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors:an active water oxidation electrocatalyst, J. Am. Chem. Soc. 138(2016) 6517-6524. [26] P. Li, P.P. Huang, F.F. Wei, Y.B. Sun, C.Y. Cao, W.G. Song, Monodispersed Pd clusters generated in situ by their own reductive support for high activity and stability in cross-coupling reactions, J. Mater. Chem. A 2(2014) 12739-12745. [27] M. Zhang, F. Yu, J. Li, K. Chen, Y. Yao, P. Li, M. Zhu, Y. Shi, Q. Wang, X. Guo, High CO methanation performance of two-dimensional Ni/MgAl layered double oxide with enhanced oxygen vacancies via flash nanoprecipitation, Catalysts 8(2018) 363. [28] C. Li, M. Wei, D.G. Evans, X. Duan, Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents, Small 10(2014) 4469-4486. [29] C. Chen, P. Gunawan, X.W. Lou, R. Xu, Silver nanoparticles deposited layered double hydroxide nanoporous coatings with excellent antimicrobial activities, Adv. Funct. Mater. 22(2012) 780-787. [30] Q. Song, W. Liu, C.D. Bohn, R.N. Harper, E. Sivaniah, S.A. Scott, J.S. Dennis, A high performance oxygen storage material for chemical looping processes with CO2 capture, Energy Environ. Sci. 6(2013) 288-298. [31] F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis, Nat. Commun. 5(2014) 4477. [32] P. Vialat, C. Mousty, C. Taviot-Gueho, G. Renaudin, H. Martinez, J.C. Dupin, E. Elkaim, F. Leroux, High-performing monometallic cobalt layered double hydroxide supercapacitor with defined local structure, Adv. Funct. Mater. 24(2014) 4831-4842. [33] O. Pavel, R. Bîrjega, M. Che, G. Costentin, E. Angelescu, S. Şerban, The activity of Mg/Al reconstructed hydrotalcites by "memory effect" in the cyanoethylation reaction, Catal. Commun. 9(2008) 1974-1978. [34] P. Li, Y. Yu, P.P. Huang, H. Liu, C.Y. Cao, W.-G. Song, Core-shell structured MgAlLDO@Al-MS hexagonal nanocomposite:an all inorganic acid-base bifunctional nanoreactor for one-pot cascade reactions, J. Mater. Chem. A 2(2014) 339-344. [35] Y. Li, Y. Li, P. Wang, W. Hu, S. Zhang, Q. Shi, S. Zhan, Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods, Chem. Eng. J. 330(2017) 213-222. [36] L.J. France, Q. Yang, W. Li, Z. Chen, J. Guang, D. Guo, L. Wang, X. Li, Ceria modified FeMnO x-Enhanced performance and sulphur resistance for low-temperatureSCR of NOx, Appl. Catal., B 206(2017) 203-215. [37] L. Qiu, J. Meng, D. Pang, C. Zhang, F. Ouyang, Reaction and characterization of Co and Ce doped Mn/TiO2 catalysts for low-temperatureSCR of NO with NH3, Catal. Lett. 145(2015) 1500-1509. [38] Q. Yan, S. Chen, C. Zhang, D. O'Hare, Q. Wang, Synthesis of Cu0.5Mg1.5Mn0.5Al0.5Ox mixed oxide from layered double hydroxide precursor as highly efficient catalyst for low-temperature selective catalytic reduction of NOx with NH3, J. Colloid Interface Sci. 526(2018) 63-74. [39] X. Tang, J. Li, L. Sun, J. Hao, Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3, Appl. Catal. B 99(2010) 156-162. [40] Y. Wu, Y. Lu, C. Song, Z. Ma, S. Xing, Y. Gao, A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of oxylene, Catal. Today 201(2013) 32-39. [41] S.S.R. Putluru, L. Schill, A.D. Jensen, B. Siret, F. Tabaries, R. Fehrmann, Mn/TiO2 and Mn-Fe/TiO2 catalysts synthesized by deposition precipitation-Promising for selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal., B 165(2015) 628-635. [42] Q.L. Chen, R.T. Guo, Q.S. Wang, W.G. Pan, W.H. Wang, N.Z. Yang, C.Z. Lu, S.X. Wang, The catalytic performance of Mn/TiWOx catalyst for selective catalytic reduction of NOx with NH3, Fuel 181(2016) 852-858. [43] F. Liu, H. He, Y. Ding, C. Zhang, Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3, Appl. Catal., B 93(2009) 194-204. [44] P.R. Ettireddy, N. Ettireddy, T. Boningari, R. Pardemann, P.G. Smirniotis, Investigation of the selective catalytic reduction of nitric oxide with ammonia over Mn/TiO2 catalysts through transient isotopic labeling and in situ FT-IR studies, J. Catal. 292(2012) 53-63. [45] L. Chen, J. Li, M. Ge, The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3, Chem. Eng. J. 170(2011) 531-537. [46] Q. Li, H. Yang, F. Qiu, X. Zhang, Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal, J. Hazard. Mater. 192(2011) 915-921. [47] W. Mu, J. Zhu, S. Zhang, Y. Guo, L. Su, X. Li, Z. Li, Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature:Rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTs analysis, Catal. Sci. Technol. 6(2016) 7532-7548. [48] P.G. Smirniotis, D.A. Peña, B.S. Uphade, Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and cu oxides supported on hombikat TiO2, Angew. Chem. Int. Ed. 40(2001) 2479-2482. [49] Z. Chen, F. Wang, H. Li, Q. Yang, L. Wang, X. Li, Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase, Ind. Eng. Chem. Res. 51(2011) 202-212. [50] D. Meng, W. Zhan, Y. Guo, Y. Guo, L. Wang, G. Lu, A highly effective catalyst of SmMnOx for the NH3-SCR of NOx at low temperature:promotional role of Sm and its catalytic performance, ACS Catal. 5(2015) 5973-5983. [51] Z. Qin, J. Ren, M. Miao, Z. Li, J. Lin, K. Xie, The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating:Effect of amorphous NiO formation, Appl. Catal., B 164(2015) 18-30. [52] X. Yao, Q. Yu, Z. Ji, Y. Lv, Y. Cao, C. Tang, F. Gao, L. Dong, Y. Chen, A comparative study of different doped metal cations on the reduction, adsorption and activity of CuO/Ce0.67M0.33O2(M=Zr4+, Sn4+, Ti4+) catalysts for NO+ CO reaction, Appl. Catal., B 130(2013) 293-304. [53] Y. Sun, S. Gao, F. Lei, C. Xiao, Y. Xie, Ultrathin two-dimensional inorganic materials:New opportunities for solid state nanochemistry, Accounts Chem. Res. 48(2014) 3-12. [54] H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets, Accounts Chem. Res. 47(2014) 1067-1075. [55] F. Kapteijn, A.D. Vanlangeveld, J.A. Moulijn, A. Andreini, M.A. Vuurman, A.M. Turek, J. M. Jehng, I.E. Wachs, Alumina-supported manganese oxide catalysts:I. Characterization:Effect of precursor and loading, J. Catal. 150(1994) 94-104. [56] S.S. Kim, S.C. Hong, Improving the activity of Mn/TiO2 catalysts through control of the pH and valence state of Mn during their preparation, J. Air Waste Manage. Assoc. 62(2012) 362-369. [57] D. Yuan, X. Li, Q. Zhao, J. Zhao, M. Tadé, S. Liu, A novel CuTi-containing catalyst derived from hydrotalcite-like compounds for selective catalytic reduction of NO with C3H6 under lean-burn conditions, J. Catal. 309(2014) 268-279. [58] D. Yuan, X. Li, Q. Zhao, J. Zhao, S. Liu, M. Tadé, Effect of surface Lewis acidity on selective catalytic reduction of NO by C3H6 over calcined hydrotalcite, Appl. Catal. A 451(2013) 176-183. [59] J. Zhu, F. Gao, L. Dong, W. Yu, L. Qi, Z. Wang, L. Dong, Y. Chen, Studies on surface structure of M xOy/MoO3/CeO2 system (M=Ni, Cu, Fe) and its influence on SCR of NO by NH3, Appl. Catal. B, 95(2010) 144-152. [60] J. Tian, C. Wang, F. Yu, X. Zhou, J. Zhang, S. Yang, J. Dan, P. Cao, B. Dai, Q. Wang, MnCe-Fe-Al mixed oxide nanoparticles via a high shear mixer facilitated coprecipitation method for low temperature selective catalytic reduction of NO with NH3, Appl. Catal. A 586(2019) 117237. [61] C.P. Cho, Y.D. Pyo, J.Y. Jang, G.C. Kim, Y.J. Shin, NOx reduction and N2O emissions in a diesel engine exhaust using Fe-zeolite and vanadium based SCR catalysts, Appl. Therm. Eng. 110(2017) 18-24. [62] G. Li, B. Wang, Z. Wang, Z. Li, Q. Sun, W.Q. Xu, Y. Li, Reaction mechanism of low-temperature selective catalytic reduction of NOx over Fe-Mn oxides supported on flyash-derived SBA-15 molecular sieves:Structure-activity relationships and in situ DRIFT analysis, J. Phys. Chem. C 122(2018) 20210-20231. [63] F. Kapteijn, L. Singoredjo, A. Andreini, J. Moulijn, Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia, Appl. Catal., B 3(1994) 173-189. [64] Z. Huang, Z. Zhu, Z. Liu, Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures, Appl. Catal., B 39(2002) 361-368. [65] J. Tian, K. Zhang, W. Wang, F. Wang, J. Dan, S. Yang, J. Zhang, B. Dai, F. Yu, Enhanced selective catalytic reduction of NO with NH3 via porous micro-spherical aggregates of Mn-Ce-Fe-Ti mixed oxide nanoparticles, Green Energy Environ. 4(2019) 311-321. [66] Z. Liu, J. Zhu, J. Li, L. Ma, S.I. Woo, Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3, ACS Appl. Mater. Inter. 6(2014) 14500-14508. [67] F. Holzer, U. Roland, F.-D. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds:Part 1. Accessibility of the intra-particle volume, Appl. Catal., B 38(2002) 163-181. [68] B. Shen, X. Zhang, H. Ma, Y. Yao, T. Liu, A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O, J. Environ. Sci. 25(2013) 791-800. |