Chin.J.Chem.Eng. ›› 2017, Vol. 25 ›› Issue (12): 1695-1705.DOI: 10.1016/j.cjche.2017.03.030
• Review • Next Articles
Minhua Zhang1,2, Baojuan Huang1,2, Haoxi Jiang1,2, Yifei Chen1,2
Received:
2016-10-28
Revised:
2017-03-01
Online:
2018-01-18
Published:
2017-12-28
Contact:
Yifei Chen,E-mail address:yfchen@tju.edu.cn.
Supported by:
Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the National Natural Science Foundation of China (21506150).
Minhua Zhang1,2, Baojuan Huang1,2, Haoxi Jiang1,2, Yifei Chen1,2
通讯作者:
Yifei Chen,E-mail address:yfchen@tju.edu.cn.
基金资助:
Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the National Natural Science Foundation of China (21506150).
Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen. Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NOx[J]. Chin.J.Chem.Eng., 2017, 25(12): 1695-1705.
Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen. Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NOx[J]. Chinese Journal of Chemical Engineering, 2017, 25(12): 1695-1705.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2017.03.030
[1] G. Qi, R.T. Yang, Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania, Appl. Catal. B 44 (2003) 217-225.[2] L. Yan, Y. Liu, H. Hu, H. Li, L. Shi, D. Zhang, Investigations on the antimony promotional effect on CeO2-WO3/TiO2 for selective catalytic reduction of NOx with NH3, ChemCatChem 8 (2016) 2267-2278.[3] K.Q. Tran, P. Kilpinen, N. Kumar, In-situ catalytic abatement of NOx during fluidized bed combustion—a literature study, Appl. Catal. B 78 (2008) 129-138.[4] R.Q. Long, R.T. Yang, R. Chang, Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe-Mn based catalysts, Chem. Commun. (2002) 452-453.[5] J. Zuo, Z. Chen, F. Wang, Y. Yu, L. Wang, X. Li, Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn-Zr mixed oxide catalysts, Ind. Eng. Chem. Res. 53 (2014) 2647-2655.[6] K. Cheng, J. Liu, T. Zhang, J. Li, Z. Zhao, Y.Wei, G. Jiang, A. Duan, Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5-WO3/CeO2-TiO2 catalyst, J. Environ. Sci. (China) 26 (2014) 2106-2113.[7] S. Pan, H. Luo, L. Li, Z. Wei, B. Huang, H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3, J. Mol. Catal. A Chem. 377 (2013) 154-161.[8] A. Yamamoto, K. Teramura, S. Hosokawa, T. Tanaka, Effects of SO2 on selective catalytic reduction of NO with NH3 over a TiO2 photocatalyst, Sci. Technol. Adv. Mater. 16 (2015) 024901.[9] Z. Ma, X.Wu, Y. Feng, Z. Si, D.Weng, L. Shi, Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst, Prog. Nat. Sci. Mater. Int. 25 (2015) 342-352.[10] P. Li, Z. Liu, Q. Li, W.Wu, Q. Liu,Multiple roles of SO2 in selective catalytic reduction of NO by NH3 over V2O5/AC catalyst, Ind. Eng. Chem. Res. 53 (2014) 7910-7916.[11] F. Liu, K. Asakura, H. He,W. Shan, X. Shi, C. Zhang, Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3, Appl. Catal. B 103 (2011) 369-377.[12] F. Liu, H. He, Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study, Catal. Today 153 (2010) 70-76.[13] A. Kumar, M.A. Smith, K. Kamasamudram, N.W. Currier, A. Yezerets, Chemical deSOx: an effective way to recover Cu-zeolite SCR catalysts from sulfur poisoning, Catal. Today 267 (2016) 10-16.[14] W. Shan, H. Song, Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature, Catal. Sci. Technol. 5 (2015) 4280-4288.[15] D.W. Brookshear, J.g. Nam, K. Nguyen, T.J. Toops, A. Binder, Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts, Catal. Today 258 (2015) 359-366.[16] Y.J. Kim, H.J. Kwon, I. Heo, I.S. Nam, B.K. Cho, J.W. Choung, G.K.Y. Moon-Soon Cha, Mn-Fe/ZSM-5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust, Appl. Catal. B 126 (2012) 9-12.[17] K. Wijayanti, K. Leistner, S. Chand, A. Kumar, K. Kamasamudram, N.W. Currier, A. Yezerets, L. Olsson, Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions, Catal. Sci. Technol. 6 (2016) 2565-2579.[18] Y. Jangjou, M. Ali, Q. Chang, D. Wang, J. Li, A. Kumar, W.S. Epling, Effect of SO2 on NH3 oxidation over a Cu-SAPO-34 SCR catalyst, Catal. Sci. Technol. 6 (2016) 2679-2685.[19] A. Kumar, M.A. Smith, K. Kamasamudram, N.W. Currier, H. An, A. Yezerets, Impact of different forms of feed sulfur on small-pore Cu-zeolite SCR catalyst, Catal. Today 231 (2014) 75-82.[20] K. Wijayanti, S. Andonova, A. Kumar, J. Li, K. Kamasamudram, N.W. Currier, A. Yezerets, L. Olsson, Impact of sulfur oxide on NH3-SCR over Cu-SAPO-34, Appl. Catal. B 166-167 (2015) 568-579.[21] M.L.M. de Oliveira, C.M. Silva, R. Moreno-Tost, T.L. Farias, A. Jimenez-López, E. Rodriguez-Castellón, Simulation of SCR equipped vehicles using iron-zeolite catalysts, Appl. Catal. A 366 (2009) 13-21.[22] L. Ma, H. Qu, J. Zhang, Q. Tang, S. Zhang, Q. Zhong, Preparation of nanosheet Fe- ZSM-5 catalysts, and effect of Fe content on acidity, water, and sulfur resistance in the selective catalytic reduction of NOx by ammonia, Res. Chem. Intermed. 39 (2013) 4109-4120.[23] S. Yang, Y. Guo, H. Chang, L.Ma, Y. Peng, Z. Qu, N. Yan, C.Wang, J. Li, Novel effect of SO2 on the SCR reaction over CeO2:Mechanism and significance, Appl. Catal. B 136- 137 (2013) 19-28.[24] X. Xiao, S. Xiong, Y. Shi,W. Shan, S. Yang, Effect of H2O and SO2 on the selective catalytic reduction of NO with NH3 over Ce/TiO2 catalyst: Mechanism and kinetic study, J. Phys. Chem. C 120 (2016) 1066-1076.[25] D. Zhang, L. Zhang, L. Shi, C. Fang, H. Li, R. Gao, L. Huang, J. Zhang, In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3, Nanoscale 5 (2013) 1127-1136.[26] Y.Wang, X. Li, L. Zhan, C. Li,W. Qiao, L. Ling, Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature, Ind. Eng. Chem. Res. 54 (2015) 2274-2278.[27] L. Zhang, X. Zhang, S. Lv, X.Wu, P.Wang, Promoted performance of aMnOx/PG catalyst for low-temperature SCR against SO2 poisoning by addition of cerium oxide, RSC Adv. 5 (2015) 82952-82959.[28] Y. Wang, L. Yang, W.P. Liao, F. Wang, Research of SO2 resistance of MnOx catalyst modified by Ce for low temperature SCR with NH3, Adv. Mater. Res. 356-360 (2011) 529-532.[29] Z.Wu, R. Jin, H.Wang, Y. Liu, Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature, Catal. Commun. 10 (2009) 935-939.[30] L. Wei, S. Cui, H. Guo, X. Ma, L. Zhang, DRIFT and DFT study of cerium addition on SO2 of Manganese-based Catalysts for low temperature SCR, J. Mol. Catal. A Chem. 421 (2016) 102-108.[31] K.J. Lee, P.A. Kumar, M.S. Maqbool, K.N. Rao, K.H. Song, H.P. Ha, Ce added Sb-V2O5/ TiO2 catalysts for low temperature NH3 SCR: physico-chemical properties and catalytic activity, Appl. Catal. B 142-143 (2013) 705-717.[32] D.W. Kwon, K.B. Nam, S.C. Hong, The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOx by NH3, Appl. Catal. B 166- 167 (2015) 37-44.[33] W. Cha, S.H. Ehrman, J. Jurng, CeO2 added V2O5/TiO2 catalyst prepared by chemical vapor condensation (CVC) and impregnation method for enhanced NH3-SCR of NOx at low temperature, J. Environ. Chem. Eng. 4 (2016) 556-563.[34] L. Pang, C. Fan, L. Shao, K. Song, J. Yi, X. Cai, J. Wang, M. Kang, T. Li, The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust, Chem. Eng. J. 253 (2014) 394-401.[35] S. Lai, D.Meng,W. Zhan, Y. Guo, Y. Guo, Z. Zhang, G. Lu, The promotional role of Ce in Cu/ZSM-5 and in situ surface reaction for selective catalytic reduction of NOx with NH3, RSC Adv. 5 (2015) 90235-90244.[36] S.Y. Jiang, R.X. Zhou, Ce doping effect on performance of the Fe/β catalyst for NOx reduction by NH3, Fuel Process. Technol. 133 (2015) 220-226.[37] W.L. Zhen, R.T. Guo,W.G. Pan, Low temperature selective catalytic reduction of NO on CeO2-Fe3O4/TiO2,CeO2/TiO2 catalysts prepared by coprecipitation method, Adv. Mater. Res. 960-961 (2014) 234-239.[38] Y. Shu, H. Sun, X. Quan, S. Chen, Enhancement of catalytic activity over the ironmodified Ce/TiO2 catalyst for selective catalytic reduction of NOx with ammonia, J. Phys. Chem. C 116 (2012) 25319-25327.[39] S. Cai, D. Zhang, L. Zhang, L. Huang, H. Li, R. Gao, L. Shi, J. Zhang, Comparative study of 3D orderedmacroporous Ce0.75Zr0.2M0.05O2-δ(M=Fe, Cu, Mn, Co) for selective catalytic reduction of NO with NH3, Catal. Sci. Technol. 4 (2014) 93-101.[40] W. Zhao, C. Li, P. Lu, Q.Wen, Y. Zhao, X. Zhang, C. Fan, S. Tao, Iron, lanthanum and manganese oxides loaded on γ-Al2O3 for selective catalytic reduction of NO with NH3 at low temperature, Environ. Technol. 34 (2013) 81-90.[41] X. Tang, J. Hao, H. Yi, J. Li, Low-temperature SCR of NOwith NH3 over AC/C supported manganese-based monolithic catalysts, Catal. Today 126 (2007) 406-411.[42] C. Fang, L. Shi, H. Hu, J. Zhang, D. Zhang, Rational design of 3D hierarchical foamlike Fe2O3@CuOx monolith catalysts for selective catalytic reduction of NO with NH3, RSC Adv. 5 (2015) 11013-11022.[43] R. Gao, D. Zhang, X. Liu, L. Shi, P. Maitarad, H. Li, J. Zhang, W. Cao, Enhanced catalytic performance of V2O5-WO3/Fe2O3/TiO2 microspheres for selective catalytic reduction of NO by NH3, Catal. Sci. Technol. 3 (2013) 191-199.[44] Y.X. Teng, C.Y. Song, X.N. Lu, Z.S. Tong, Y.S. Qin, Influence of Fe doping on Ce-Mn/ TiO2-ZrO2 catalysts for low-temperature selective catalytic reduction of NO, Adv. Mater. Res. 898 (2014) 447-451.[45] B. Shen, T. Liu, N. Zhao, X. Yang, L. Deng, Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3, J. Environ. Sci. 22 (2010) 1447-1454.[46] M.E. Yu, C. Li, G. Zeng, Y. Zhou, X. Zhang, Y.E. Xie, The selective catalytic reduction of NOwith NH3 over a novel Ce-Sn-Timixed oxides catalyst: promotional effect of SnO2, Appl. Surf. Sci. 342 (2015) 174-182.[47] H. Chang, J. Li, X. Chen, L. Ma, S. Yang, J.W. Schwank, J. Hao, Effect of Sn on MnOx- CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2, Catal. Commun. 27 (2012) 54-57.[48] H. Chang, X. Chen, J. Li, L. Ma, C.Wang, C. Liu, J.W. Schwank, J. Hao, Improvement of activity and SO2 tolerance of Sn-modifiedMnOx-CeO2 catalysts for NH3-SCR at low temperatures, Environ. Sci. Technol. 47 (2013) 5294-5301.[49] M. Qiu, S. Zhan, D. Zhu, H. Yu, Q. Shi, NH3-SCR performance improvement of mesoporous Sn modified Cr-MnOx catalysts at low temperatures, Catal. Today 258 (2015) 103-111.[50] X. Li, Y. Li, S. Deng, T.A. Rong, A Ce-Sn-Ox catalyst for the selective catalytic reduction of NOx with NH3, Catal. Commun. 40 (2013) 47-50.[51] P. Zhang, Q. Hou, SnO2 modified Ce-Ti-Ox catalyst for the selective catalytic reduction of NOx with NH3, React. Kinet. Mech. Catal. 117 (2016) 119-128.[52] C. Fang, L. Shi, H. Li, L. Huang, J. Zhang, D. Zhang, Creating hierarchically macro-/ mesoporous Sn/CeO2 for the selective catalytic reduction of NO with NH3, RSC Adv. 6 (2016) 78727-78736.[53] D.W. Kwon, K.B. Nam, S.C. Hong, Influence of tungsten on the activity of a Mn/Ce/ W/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal. A 497 (2015) 160-166.[54] D.W. Kwon, S.C. Hong, Promotional effect of tungsten-doped CeO2/TiO2 for selective catalytic reduction of NOx with ammonia, Appl. Surf. Sci. 356 (2015) 181-190.[55] P. Zhang, K. Li, Q. Lei, Enhanced activity of tungsten doped CeAlOx catalysts for the selective catalytic reduction of NOx with NH3, React. Kinet. Mech. Catal. 116 (2015) 523-533.[56] Z. Fang, B. Yuan, T. Lin, H. Xu, Y. Cao, Z. Shi, M. Gong, Y. Chen, Monolith Ce0.65Zr0.35O2-based catalysts for selective catalytic reduction of NOx with NH3, Chem. Eng. Res. Des. 94 (2015) 648-659.[57] Z. Ma, X. Wu, Y. Feng, Z. Si, D. Weng, Effects of WO3 doping on stability and N2O escape of MnOx-CeO2 mixed oxides as a low-temperature SCR catalyst, Catal. Commun. 69 (2015) 188-192.[58] P. Zhang, D. Li, Selective catalytic reduction of NO with NH3 over iron-vanadium mixed oxide catalyst, Catal. Lett. 144 (2014) 959-963.[59] B. Wu, Effect on addictives adding of Mn-Ce/TiO2 selective catalytic reduction NO by NH3 at low-temperature, Adv. Mater. Res. 955-959 (2014) 25-29.[60] W. Yang, F. Liu, L. Xie, Z. Lian, H. He, Effect of V2O5 additive on the SO2 resistance of a Fe2O3/AC catalyst for NH3-SCR of NOx at lowtemperatures, Ind. Eng. Chem. Res. 55 (2016) 2677-2685.[61] Z. Lian, F. Liu, H. He, Enhanced activity of Ti-modified V2O5-CeO2 catalyst for the selective catalytic reduction of NOx with NH3, Ind. Eng. Chem. Res. 53 (2014) 19506-19511.[62] Y. Xiong, C. Tang, X. Yao, L. Zhang, L. Li, X. Wang, Y. Deng, F. Gao, L. Dong, Effect of metal ions doping (M=Ti4++, Sn4++) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3, Appl. Catal. A 495 (2015) 206-216.[63] X. Zhao, L. Huang, H. Li, H. Hu, J. Han, L. Shi, D. Zhang, Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3, Chin. J. Catal. 36 (2015) 1886-1899.[64] X. Gao, X.S. Du, L.W. Cui, Y.C. Fu, Z.Y. Luo, K.F. Cen, A Ce-Cu-Ti oxide catalyst for the selective catalytic reduction of NO with NH3, Catal. Commun. 12 (2010) 255-258.[65] X.S. Du, X. Gao, L.W. Cui, Y.C. Fu, Z.Y. Luo, K.F. Cen, Investigation of the effect of Cu addition on the SO2-resistance of a Ce-Ti oxide catalyst for selective catalytic reduction of NO with NH3, Fuel 92 (2012) 49-55.[66] J. Qiao, N. Wang, Z. Wang, W. Sun, K. Sun, Porous bimetallic Mn2Co1Ox catalysts prepared by a one-step combustion method for the low temperature selective catalytic reduction of NOx with NH3, Catal. Commun. 72 (2015) 111-115.[67] Q.M. Zhang, C.L. Song, G. Lv, F. Bin, H.T. Pang, J.O. Song, Effect of metal oxide partial substitution of V2O5 in V2O5-WO3/TiO2 on selective catalytic reduction of NO with NH3, J. Ind. Eng. Chem. 24 (2015) 79-86.[68] X. Zhang, B. Shen, K.Wang, J. Chen, A contrastive study of the introduction of cobalt as a modifier for active components and supports of catalysts for NH3-SCR, J. Ind. Eng. Chem. 19 (2013) 1272-1279.[69] X. Li, Y. Li, Molybdenum modified CeAlOx catalyst for the selective catalytic reduction of NO with NH3, J. Mol. Catal. A Chem. 386 (2014) 69-77.[70] D.W.Kwon, K.H. Park, S.C. Hong, Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum, Chem. Eng. J. 284 (2016) 315-324.[71] S. Ding, F. Liu, X. Shi, H. He, Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst, Appl. Catal. B 180 (2016) 766-774.[72] Y. Jiang, Y. Yan, S.B. Huang, X.X. Zhang, X.W. Wang, W.X. Song, Selective catalytic reduction of NO with NH3 over a Ce-Zr-Ti oxide catalyst, Adv. Mater. Res. 864- 867 (2014) 353-356.[73] F. Cao, J. Xiang, S. Su, P.Wang, L. Sun, S. Hu, S. Lei, The activity and characterization of MnOx-CeO2-ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3, Chem. Eng. J. 243 (2014) 347-354.[74] X. Zhao, L. Huang, H. Li, H. Hu, X. Hu, L. Shi, D. Zhang, Promotional effects of zirconium doped CeVO4 for the low-temperature selective catalytic reduction of NOx with NH3, Appl. Catal. B 183 (2016) 269-281.[75] M. Aguilar-Romero, R. Camposeco, S. Castillo, J. Marin, V. Rodriguez-González, L.A. Garcia-Serrano, I. Mejia-Centeno, Acidity, surface species, and catalytic activity study on V2O5-WO3/TiO2 nanotube catalysts for selective NO reduction by NH3, Fuel 198 (2017) 123-133.[76] Y. Shi, S. Chen, H. Sun, Y. Shu, X. Quan, Low-temperature selective catalytic reduction of NOx with NH3 over hierarchically macro-mesoporous Mn/TiO2, Catal. Commun. 42 (2013) 10-13.[77] L. Huang, X. Zhao, L. Zhang, L. Shi, J. Zhang, D. Zhang, Large-scale growth of hierarchical transition-metal vanadate nanosheets on metal meshes as monolith catalysts for De-NOx reaction, Nanoscale 7 (2015) 2743-2749.[78] H. Li, D. Zhang, P. Maitarad, L. Shi, R. Gao, J. Zhang, W. Cao, In situ synthesis of 3D flower-like NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3, Chem. Commun. 48 (2012) 10645-10647.[79] L. Zhang, L. Shi, L. Huang, J. Zhang, R. Gao, D. Zhang, Rational design of highperformance DeNOx catalysts based on MnxCo3 - xO4 nanocages derived from metal-organic frameworks, ACS Catal. 4 (2014) 1753-1763.[80] S. Cai, H. Hu, H. Li, L. Shi, D. Zhang, Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3: Improvement of catalytic activity and SO2 tolerance, Nanoscale 8 (2016) 3588-3598.[81] J. Liu, Y. Du, J. Liua, Z. Zhao, K. Cheng, Y. Chen, Y.Wei,W. Song, X. Zhang, Design of MoFe/Beta@CeO2 catalysts with a core-shell structure and their catalytic performances for the selective catalytic reduction of NO with NH3, Appl. Catal. B 203 (2017) 704-714.[82] L. Zhang, D. Zhang, J. Zhang, S. Cai, C. Fang, L. Huang, H. Li, R. Gao, L. Shi, Design of meso-TiO2@MnOx-CeOx/CNTs with a core-shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance, Nanoscale 5 (2013) 9821-9829.[83] X. Liu, P. Ning, H. Li, Z.X. Song, Y.C. Wang, J.H. Zhang, X.S. Tang, M.Z. Wang, Q.L. Zhang, Probing NH3-SCR catalytic activity and SO2 resistance over aqueous-phase synthesized Ce-W@TiO2 catalyst, J. Fuel Chem. Technol. 44 (2016) 225-231.[84] L. Zhang, L. Li, Y. Cao, X. Yao, C. Ge, F. Gao, Y. Deng, C. Tang, L. Dong, Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3, Appl. Catal. B 165 (2015) 589-598.[85] R.T. Yang, N. Chen, A new approach to decomposition of nitric oxide using sorbent/ catalyst without reducing gas: Use of heteropoly compounds, Ind. Eng. Chem. Res. 33 (1994) 825-831.[86] X.Weng, X. Dai, Q. Zeng, Y. Liu, Z. Wu, DRIFT studies on promotion mechanism of H3PW12O40 in selective catalytic reduction of NO with NH3, J. Colloid Interface Sci. 461 (2016) 9-14.[87] F. Guo, J. Yu, M. Chu, G. Xu, Interaction between support and V2O5 in the selective catalytic reduction of NO by NH3, Catal. Sci. Technol. 4 (2014) 2147-2155.[88] X. Gao, L. Li, L. Song, T. Lu, J. Zhao, Z. Liu, Highly dispersedMnOx nanoparticles supported on three-dimensionally ordered macroporous carbon: A novel nanocomposite for catalytic reduction of NOx with NH3 at low temperature, RSC Adv. 5 (2015) 29577-29588.[89] Z. Huang, H. Li, J. Gao, X. Gu, L. Zheng, P. Hu, Y. Xin, J. Chen, Y. Chen, Z. Zhang, J. Chen, X. Tang, Alkali- and sulfur-resistant tungsten-based catalysts for NOx emissions control, Environ. Sci. Technol. 49 (2015) 14460-14465.[90] Q. Li, S. Chen, Z. Liu, Q. Liu, Combined effect of KCl and SO2 on the selective catalytic reduction of NO by NH3 over V2O5/TiO2 catalyst, Appl. Catal. B 164 (2015) 475-482.[91] D. Zhou, Z. Ren, B. Li, Z. Ma, X. Zhang, H. Yang, Influence of hexagonal boron nitride on the selective catalytic reduction of NO with NH3 over CuOx/TiO2, RSC Adv. 5 (2015) 31708-31715.[92] Y. Shu, T. Aikebaier, X. Quan, S. Chen, H. Yu, Selective catalytic reaction of NOx with NH3 over Ce-Fe/TiO2-loaded wire-mesh honeycomb: Resistance to SO2 poisoning, Appl. Catal. B 150-151 (2014) 630-635.[93] Y. Shu, H. Sun, X. Quan, S. Chen, Improvement of water-, sulfur dioxide-, and dust-resistance in selective catalytic reduction of NOx with NH3 using a wiremesh honeycomb catalyst, Ind. Eng. Chem. Res. 51 (2012) 7867-7873.[94] X. Zhao, L. Huang, S. Namuangruk, H. Hu, X. Hu, L. Shi, D. Zhang, Morphologydependent performance of Zr-CeVO4/TiO2 for selective catalytic reduction of NO with NH3, Catal. Sci. Technol. 6 (2016) 5543-5553.[95] J. Han, J. Meeprasert, P. Maitarad, S. Nammuangruk, L. Shi, D. Zhang, Investigation of the facet-dependent catalytic performance of Fe2O3/CeO2 for the selective catalytic reduction of NO with NH3, J. Phys. Chem. C 120 (2016) 1523-1533.[96] W. Su, X. Lu, S. Jia, J. Wang, H. Ma, Y. Xing, Catalytic reduction of NOx over TiO2- graphene oxide supported with MnOx at low temperature, Catal. Lett. 145 (2015) 1446-1456.[97] X. Lu, C. Song, S. Jia, Z. Tong, X. Tang, Y. Teng, Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-graphene, Chem. Eng. J. 260 (2015) 776-784.[98] X. Xiao, Z. Sheng, L. Yang, F. Dong, Low-temperature selective catalytic reduction of NOx with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method, Catal. Sci. Technol. 6 (2016) 1507-1514.[99] X. Wang, L. Jiang, J. Wang, R. Wang, Ag/bauxite catalysts: Improved lowtemperature activity and SO2 tolerance for H2-promoted NH3-SCR of NOx, Appl. Catal. B 165 (2015) 700-705.[100] E. Park,M. Kim, H. Jung, S. Chin, J. Jurng, Effect of sulfur on Mn/Ti catalysts prepared using chemical vapor condensation (CVC) for low-temperature NO reduction, ACS Catal. 3 (2013) 1518-1525.[101] C. Liu, L. Chen, J. Li, L. Ma, H. Arandiyan, Y. Du, J. Xu, J. Hao, Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3, Environ. Sci. Technol. 46 (2012) 6182-6189.[102] W. Zhao, Y. Tang, Y. Wan, L. Li, S. Yao, X. Li, J. Gu, Y. Li, J. Shi, Promotion effects of SiO2 or/and Al2O3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3, J. Hazard. Mater. 278 (2014) 350-359.[103] R.T. Guo, Y. Zhou, W.G. Pan, J.N. Hong,W.L. Zhen, Q. Jin, C.G. Ding, S.Y. Guo, Effect of preparation methods on the performance of CeO2/Al2O3 catalysts for selective catalytic reduction of NO with NH3, J. Ind. Eng. Chem. 19 (2013) 2022-2025.[104] R.T. Guo, W.L. Zhen, W.G. Pan, J.N. Hong, Q. Jin, C.G. Ding, S.Y. Guo, Lowtemperature selective catalytic reduction of NO on CeO2-CuO/Al2O3 catalysts prepared by different methods, Environ. Technol. 35 (2014) 1766-1772.[105] B. Jiang, Y. Liu, Z. Wu, Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods, J. Hazard. Mater. 162 (2009) 1249-1254.[106] X. Gao, Y. Jiang, Y. Fu, Y. Zhong, Z. Luo, K. Cen, Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3, Catal. Commun. 11 (2010) 465-469.[107] W. Yao, Y. Liu, X. Wang, X. Weng, H. Wang, Z. Wu, The superior performance of sol-gel made Ce-O-P catalyst for selective catalytic reduction of NO with NH3, J. Phys. Chem. C 120 (2016) 221-229.[108] Z. Liu, J. Zhu, J. Li, L. Ma, S.I.Woo, Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3, ACS Appl. Mater. Interfaces 6 (2014) 14500-14508.[109] H. Li, G.F. Qu, Y.K. Duan, P. Ning, Q.L. Zhang, X. Liu, Z.X. Song, Performance and characterisation of CeO2-TiO2-WO3 catalysts for selective catalytic reduction of NO with NH3, Chem. Pap. 69 (2015) 817-826.[110] C. Fang, D. Zhang, L. Shi, R. Gao, H. Li, L. Ye, J. Zhang, Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NOwith NH3, Catal. Sci. Technol. 3 (2013) 803-811.[111] J. Han, D. Zhang, P. Maitarad, L. Shi, S. Cai, H. Li, L. Huang, J. Zhang, Fe2O3 nanoparticles anchored in situ on carbon nanotubes via an ethanol-thermal strategy for the selective catalytic reduction of NO with NH3, Catal. Sci. Technol. 5 (2015) 438-446.[112] D. Zhang, L. Zhang, C. Fang, R. Gao, Y. Qian, L. Shi, J. Zhang, MnOx-CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3, RSC Adv. 3 (2013) 8811-8819.[113] G. Wu, J. Li, Z. Fang, L. Lan, R. Wang, T. Lin, M. Gong, Y. Chen, Effectively enhance catalytic performance by adjusting pH during the synthesis of active components over FeVO4/TiO2-WO3-SiO2 monolith catalysts, Chem. Eng. J. 271 (2015) 1-13.[114] H.T. Danh, Y.E. Jeong, P.A. Kumar, H.P. Ha, Enhanced NH3-SCR activity of Sb-V/ CeO2-TiO2 catalyst at low temperatures by synthesis modification, Res. Chem. Intermed. 42 (2016) 155-169.[115] R. Jin, Y. Liu, Z.Wu, H.Wang, T. Gu, Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst, Catal. Today 153 (2010) 84-89.[116] X. Gao, Y. Jiang, Y. Zhong, Z. Luo, K. Cen, The activity and characterization of CeO2- TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3, J. Hazard. Mater. 174 (2010) 734-739.[117] R. Yang, H. Huang, Y. Chen, X. Zhang, H. Lu, Performance of Cr-doped vanadia/titania catalysts for low-temperature selective catalytic reduction of NOx with NH3, Chin. J. Catal. 36 (2015) 1256-1262.[118] B. Li, Z. Ren, Z. Ma, X. Huang, F. Liu, X. Zhang, H. Yang, Selective catalytic reduction of NO by NH3 over CuO-CeO2 in the presence of SO2, Catal. Sci. Technol. 6 (2016) 1719-1725.[119] M. Magnusson, E. Fridell, H. Harelind, Improved low-temperature activity for marine selective catalytic reduction systems, Proc. IMechE Part M J. Eng. Marit. Environ. 230 (2016) 126-135.[120] Y. Yu, J. Chen, J. Wang, Y. Chen, Performances of CuSO4/TiO2 catalysts in selective catalytic reduction of NOx by NH3, Chin. J. Catal. 37 (2016) 281-287.[121] X. Du, X. Wang, Y. Chen, X. Gao, L. Zhang, Supported metal sulfates on Ce-TiOx as catalysts for NH3-SCR of NO: high resistances to SO2 and potassium, J. Ind. Eng. Chem. 36 (2016) 271-278.[122] M. Kieltyka, A.P.S. Dias, H. Kubiczek, B. Sarapata, T. Grzybek, The influence of poisoning on the deactivation of DeNOx catalysts, C.R. Chim. 18 (2015) 1036-1048.[123] R. Ke, J. Li, X. Liang, J. Hao, Novel promoting effect of SO2 on the selective catalytic reduction of NOx by ammonia over Co3O4 catalyst, Catal. Commun. 8 (2007) 2096-2099.[124] A. Valiheikki, T. Kolli, M. Huuhtanen, T. Maunula, R.L. Keiski, Activity enhancement of W-CeZr oxide catalysts by SO2 treatment in NH3-SCR, Top. Catal. 58 (2015) 1002-1011.[125] L. Zhang, H. Qu, T. Du, W. Ma, Q. Zhong, H2O and SO2 tolerance, activity and reaction mechanism of sulfated Ni-Ce-La composite oxide nanocrystals in NH3-SCR, Chem. Eng. J. 296 (2016) 122-131.[126] L. Qiu, Y. Wang,D. Pang, F. Ouyang, C. Zhang, SO42--Mn-Co-Ce supported on TiO2/ SiO2 with high sulfur durability for low-temperature SCR of NO with NH3, Catal. Commun. 78 (2016) 22-25.[127] P.Wang, H. Zhao, H. Sun, H. Yu, S. Chen, X. Quan, Porousmetal-organic framework MIL-100(Fe) as an efficient catalyst for the selective catalytic reduction of NOx with NH3, RSC Adv. 4 (2014) 48912-48919.[128] H. Jiang, Q.Wang, H.Wang, Y. Chen, M. Zhang, MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3, ACS Appl. Mater. Interfaces 8 (2016) 26817-26826.[129] P. Wang, H. Sun, X. Quan, S. Chen, Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH3 at low temperature, J. Hazard. Mater. 301 (2016) 512-521. |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[4] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[5] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[6] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[7] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[8] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[9] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[10] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[11] | Da Ke, Minjia Wang, Jiancheng Ruan, Xinzhi Chen, Shaodong Zhou. Efficient, continuous oxidation of durene to pyromellitic dianhydride mediated by a V-Ti-P ternary catalyst: The remarkable doping effect [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 156-164. |
[12] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 192-201. |
[13] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[14] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
[15] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 277-292. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||