Chin.J.Chem.Eng. ›› 2013, Vol. 21 ›› Issue (8): 835-843.DOI: 10.1016/S1004-9541(13)60559-5
Previous Articles Next Articles
DAI Chengna, LEI Zhigang, WANG Yuli, ZHANG Runduo, CHEN Biaohua
Received:
2012-01-08
Revised:
2012-08-04
Online:
2013-08-24
Published:
2013-08-28
Supported by:
Supported by the National Natural Science Foundation of China (21121064, 21076008), and the Projects in the National Science & Technology Pillar Program During the 12th Five-Year Plan Period (2011BAC06B04).
代成娜, 雷志刚, 王玉丽, 张润铎, 陈标华
通讯作者:
LEI Zhigang
基金资助:
Supported by the National Natural Science Foundation of China (21121064, 21076008), and the Projects in the National Science & Technology Pillar Program During the 12th Five-Year Plan Period (2011BAC06B04).
DAI Chengna, LEI Zhigang, WANG Yuli, ZHANG Runduo, CHEN Biaohua. Transfer and Reaction Performances of Selective Catalytic Reduction of N2O with CO over Monolith Catalysts[J]. Chin.J.Chem.Eng., 2013, 21(8): 835-843.
代成娜, 雷志刚, 王玉丽, 张润铎, 陈标华. Transfer and Reaction Performances of Selective Catalytic Reduction of N2O with CO over Monolith Catalysts[J]. Chinese Journal of Chemical Engineering, 2013, 21(8): 835-843.
1 Rhoderick, G.C., Dorko, W.D., "Standards development of global warming gas species: Methane, nitrous oxide, trichlorofluoromethane, and dichlorodifluoromethane", Environ. Sci. Technol., 38, 2685-2692 (2004). 2 Pérez-Ramírez, J., "Prospects of N2O emission regulations in the European fertilizer industry", Appl. Catal. B: Environ., 70, 31-35 (2007). 3 Khalil, M.A.K., "Non-CO2 greenhouse gases in the atmosphere", Annu. Rev. Energy Environ., 24, 645-661 (1999). 4 Aneja, V.P., Schlesinger, W.H., Erisman, J.W., "Effects of agriculture upon the air quality and climate: Research, policy, and regulations", Environ. Sci. Technol., 43, 4234-4240 (2009). 5 Becker, K.H., Lörzer, J.C., Kurtenbach, R., Wiesen, P., Jensen, T.E., Wallington, T.J., "Nitrous oxide (N2O) emissions from vehicles", Environ. Sci. Technol., 33, 4134-4139 (1999). 6 Giecko, G., Borowiecki, T., Gac, W., Kruk, J., "Fe2O3/Al2O3 catalysts for the N2O decomposition in the nitric acid industry", Catal. Today, 137, 403-409 (2008). 7 Shimizu, A., Tanaka, K., Fujimori, M., "Abatement technologies for N2O emissions in the adipic acid industry", Chemosphere-Global Change Sci., 2, 425-434 (2000). 8 Centi, G., Generali, P., dall'Olio, L., Perathoner, S., Rak, Z., "Removal of N2O from industrial gaseous streams by selective adsorption over metal-exchanged zeolites", Ind. Eng. Chem. Res., 39, 131-137 (2000). 9 Wójtowicz, M.A., Miknis, F.P., Grimes, R.W., Smith, W.W., Serio, M.A., "Control of nitric oxide, nitrous oxide, and ammonia emissions using microwave plasmas", J. Hazard. Mater., 74, 81-89 (2000). 10 Li, L.D., Shen, Q., Yu, J.J., Hao, Z.G., Xu, Z.P., Lu, G.Q., "Fe-USY zeolite catalyst for effective decomposition of nitrous oxide", Environ. Sci. Technol., 41, 7901-7906 (2007). 11 Heivia, M.A.G., Pérez-Ramírez, J., "Optimal hydrocarbon selection for catalytic N2O reduction over iron-containing ZSM-5 zeolite", Environ. Sci. Technol., 42, 8896-8900 (2008). 12 Ates, A., "Characteristics of Fe-exchanged natural zeolites for the decomposition of N2O and its selective catalytic reduction with NH3", Appl. Catal. B: Environ., 76, 282-290 (2007). 13 Debbagh, M.N., Salinas Martínez de Lecea, C., Pérez-Ramírez, J., "Catalytic reduction of N2O over steam-activated FeZSM-5 zeolite comparison of CH4, CO, and their mixtures as reductants with or without excess O2", Appl. Catal. B: Environ., 70, 335-341 (2007). 14 Yoshida, M., Nobukawa, T., Ito, S., Tomishige, K., Kunimori, K., "Structure sensitivity of ion-exchanged Fe-MFI in the catalytic reduction of nitrous oxide by methane under an excess oxygen atmosphere", J. Catal., 223, 454-464 (2004). 15 Nobukawa, T., Yoshida, M., Okumura, K., Tomishige, K., Kunimori, K., "Effect of reductants in N2O reduction over Fe-MFI catalysts", J. Catal., 229, 374-388 (2005). 16 Kögel, M., Mönnig, R., Schwieger, W., Tissler, A., Turek, T., "Simultaneous catalytic removal of NO and N2O using Fe-MFI", J. Catal., 182, 470-478 (1999). 17 van den Brink, R.W., Booneveld, S., Pels, J.R., Bakker, D.F., Verhaak, M.J.F.M., "Catalytic removal of N2O in model flue gases of a nitric acid plant using a promoted Fe zeolite", Appl. Catal. B: Environ., 32, 73-81 (2001). 18 Chaki, T., Arai, M., Ebina, T., Shimokawabe, M., "Catalytic reduction of N2O by C2H4 over Fe-ZSM-5: Formation and nature of carbonaceous deposits and influence of the addition of O2", J. Catal., 218, 220-226 (2003). 19 Sjövall, H., Blint, R.J., Gopinath, A., Olsson, L., "A kinetic model for the selective catalytic reduction of NOx with NH3 over an Fe-zeolite catalyst", Ind. Eng. Chem. Res., 49, 39-52 (2010). 20 Zhang, X.Y., Shen, Q., He, C., Ma, C.Y., Cheng, J., Li, L.D., Hao, Z.P., "Investigation of selective catalytic reduction of N2O by NH3 over an Fe-mordenite catalyst: Reaction mechanism and O2 Effect", ACS Catal., 2, 512-520 (2012). 21 Holmgren, A., Andersson, B., "Mass transfer in monolith catalysts-CO oxidation experiments and simulations", Chem. Eng. Sci., 53, 2285-2298 (1998). 22 Gupta, N., Balakotaiah, V., "Heat and mass transfer coefficients in catalytic monoliths", Chem. Eng. Sci., 56, 4771-4786 (2001). 23 Groppi, G., Tronconi, E., "Theoretical analysis of mass and heat transfer in monolith catalysts with triangular channels", Chem. Eng. Sci., 52, 3521-3526 (1997). 24 Das, S., Mukhopadhyay, A.K., Datta, S., Das, G.C., Basu, D., "Hard glass-ceramic coating by mocro wave processing", J. Eur. Ceram. Soc., 28, 729-738 (2008). 25 Kern, F., Gadow, R., "Protective multilayer coatings for carbon-carbon composites", Surf. Coat. Tech., 151-152, 418-423 (2002). 26 Martínez, T.L.M., Domínguez, M.I., Sanabria, N., Hernández, W.Y., Moreno, S., Molina, R., Odriozola, J.A., Centeno, M.A., "Deposition of Al-Fe pillared bentonites and gold supported Al-Fe pillared bentonites on metallic monoliths for catalytic oxidation reactions", Appl. Catal. A: Gen., 364, 166-173 (2009). 27 Martínez-Hansen, V., Latorre, N., Royo, C., Romeo, E., García-Bordejé, E., Monzón, A., "Development of aligned carbon nanotubes layers over stainless steel mesh monoliths", Catal. Today, 147, S71-S75 (2009). 28 Neri, G., Rizzo, G., Corigliano, F., Arrigo, I., Caprì, M., Luca, D., Modafferi, V., Donato, A., "A novel Pt/zeolite-based honeycomb catalyst for selective CO oxidation in a H2-rich mixture", Catal. Today, 147, S210-S214 (2009). 29 Tronconi, E., Forzatti, P., "Adequacy of lumped parameter models for SCR reactors with monolith structure", AIChE J., 38, 201-210 (1992). 30 Bhattacharya, M., Harold, M.P., Balakotaiah, V., "Shape normalization for catalytic monoliths", Chem. Eng. Sci., 59, 3737-3766 (2004). 31 Bhattacharya, M., Harold, M.P., Balakotaiah, V., "Mass transfer coefficients in washcoated monoliths", AIChE J., 50, 2939-2955 (2004). 32 Colombo, M., Nova, I., Tronconi, E., Schmeißer, V., Bandl-Konrad, B., Zimmermann, L., "NO/NO2/N2O-NH3 SCR reactions over a commercial Fe-zeolite catalyst for diesel exhaust aftertreatment: Intrinsic kinetics and monolith converter modeling", Appl. Catal. B: Environ., 111-112, 106-118 (2012). 33 Forzatti, P., Nova, I., Tronconi, E., "New enhanced NH3-SCR" reaction for NOx emission control", Ind. Eng. Chem. Res., 49, 10386-10391 (2010). 34 Nova, I., Bounechada, D., Maestri, R., Troconi, E., "Influence of the substrate properties on the performances of NH3-SCR monolithic catalysts for the aftertreatment of diesel exhaust: An experimental and modeling study", Ind. Eng. Chem. Res., 50, 299-309 (2011). 35 Lei, Z.G., Wen, C.P., Zhang, J., Chen, B.H., "Selective catalytic reduction for NO removal: Comparison of transfer and reaction performances among monolith catalysts", Ind. Eng. Chem. Res., 50, 5942-5951 (2011). 36 Ruggeri, M.P., Nova, I., Tronconi, E., "Experimental and modeling study of the impact of interphase and intraphase diffusional limitations on the DeNOx efficiency of a V-based extruded catalyst for NH3-SCR of Diesel exhausts", Chem. Eng. J., 207-208, 57-65 (2012). 37 Debbagh, M.N., Bueno-López, A., Salinas Martínez de Lecea, C., Pérez-Ramírez, J., "Kinetics of the N2O+CO reaction over steam-activated FeZSM-5", Appl. Catal. A Gen., 327, 66-72 (2007). 38 Kapteijn, F., Marbán, G., Rodriguez-Mirasol, J., Moulijin, J.A., "Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts", J. Catal., 167, 256-265 (1997). 39 Pérez-Ramírez, J., Santosh Kumar, M., Brückner, A., "Reduction of N2O with CO over FeMFI zeolites: Influence of the preparation method on the iron species and catalytic behavior", J. Catal., 223, 13-27 (2004). 40 Pérez-Ramírez, J., Kondratenko, E.V., Debbagh, M.N., "Transient studies on the mechanism of N2O activation and reaction with CO and C3H8 over Fe-silicalite", J. Catal., 233, 442-452 (2005). 41 Guo, K., Tang, X.H., Zhou, X.M., Chemical Reaction Engineering, Chemical Industry Press, Beijing (2000). (in Chinese) 42 Mei, H., Li, C.Y., Liu, H., Ji, S.F., "Simulation of catalytic combustion of methane in a monolith honeycomb reactor", Chin. J. Chem. Eng., 14, 56-64 (2006). 43 Liu, W., Addiego, W.P., Sorensen, C.M., "Monolith reactor for the dehydrogenation of ethylbenzene to styrene", Ind. Eng. Chem. Res., 41, 3131-3138 (2002). 44 Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., Turek, T., "Monoliths as multiphase reactors: A review, AIChE J., 50, 2918-2938 (2004). 45 Hayes, R.E., Kolaczkowski, S.T., "A study of Nusselt and Sherwood numbers in a monolith reactor", Catal. Today, 47, 295-303 (1999). 46 Eckert, E.R.G., Sakamoto, H., Simon, T.W., "The heat/mass transfer analogy factor, Nu/Sh, for boundary layers on turbine blade profiles", Int. J. Heat Mass Transfer, 44, 1223-1233 (2001). 47 Chen, G.T., Chemical Reaction Engineering, 3rd edition, Chemical Industry Press, Beijing (2007). (in Chinese) 48 Tomasic, V., Gomzi, Z., "Experimental and theoretical study of NO decomposition in a catalytic monolith reactor", Chem. Eng. Process., 43, 765-774 (2004). |
[1] | Xuejing He, Zhenlin Li, Ji Wang, Hai Yu. Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 16-25. |
[2] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[3] | Jiahao Xing, Huaizhi Han, Ruitian Yu, Wen Luo. Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 173-185. |
[4] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[5] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[6] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[7] | Shuang Qiu, Yonghou Xiao, Haoran Wu, Shengnan Lu, Qidong Zhao, Gaohong He. One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH3 at low temperature [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 193-202. |
[8] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[9] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[10] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[11] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[12] | Yaoyao Peng, Lei Song, Siru Lu, Ziyu Su, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 246-256. |
[13] | Hany M. Abd El-Lateef, Mai M. Khalaf, K. Shalabi, Antar A. Abdelhamid. Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 304-319. |
[14] | Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 114-126. |
[15] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||