Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (10): 2542-2548.DOI: 10.1016/j.cjche.2020.04.013
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Wenjuan Yan1, Wenxiang Zhang1, Qi Xia1, Shuaishuai Wang1, Shuxia Zhang1, Jian Shen2, Xin Jin1
Received:
2019-12-10
Revised:
2020-04-11
Online:
2020-12-03
Published:
2020-10-28
Contact:
Xin Jin
Supported by:
Wenjuan Yan1, Wenxiang Zhang1, Qi Xia1, Shuaishuai Wang1, Shuxia Zhang1, Jian Shen2, Xin Jin1
通讯作者:
Xin Jin
基金资助:
Wenjuan Yan, Wenxiang Zhang, Qi Xia, Shuaishuai Wang, Shuxia Zhang, Jian Shen, Xin Jin. Highly dispersed metal incorporated hexagonal mesoporous silicates for catalytic cyclohexanone oxidation to adipic acid[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2542-2548.
Wenjuan Yan, Wenxiang Zhang, Qi Xia, Shuaishuai Wang, Shuxia Zhang, Jian Shen, Xin Jin. Highly dispersed metal incorporated hexagonal mesoporous silicates for catalytic cyclohexanone oxidation to adipic acid[J]. 中国化学工程学报, 2020, 28(10): 2542-2548.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.04.013
[1] S.S. Acharyya, S. Ghosh, R. Bal, Nanoclusters of Cu(ii) supported on nanocrystalline W(Ⅵ) oxide:a potential catalyst for single-step conversion of cyclohexane to adipic acid, Green Chem. 17(2015) 3490-3499. [2] P. Bhanja, S. Chatterjee, A.K. Patra, A. Bhaumik, A new microporous oxyfluorinated titanium(IV) phosphate as an efficient heterogeneous catalyst for the selective oxidation of cyclohexanone, J. Colloid Interface Sci. 511(2018) 92-100. [3] Y. Matsumoto, M. Kuriyama, K. Yamamoto, K. Nishida, O. Onomura, Metal-free synthesis of adipic acid via organocatalytic direct oxidation of cyclohexane under ambient temperature and pressure, Org. Process. Res. Dev. 22(2018) 1312-1317. [4] L. Mouheb, L. Dermeche, T. Mazari, S. Benadji, N. Essayem, C. Rabia, Clean adipic acid synthesis from liquid-phase oxidation of cyclohexanone and cyclohexanol using (NH4)(x)A(y)PMo(12)O(40) (A:Sb, Sn, Bi) mixed heteropolysalts and hydrogen peroxide in free solvent, Catal. Lett. 148(2018) 612-620. [5] A. Tahar, S. Benadji, T. Mazari, L. Dermeche, C. Marchal-Roch, C. Rabia, Preparation, characterization and reactivity of Keggin type phosphomolybdates, H3-2x Ni (x) PMo12O40 and (NH4)(3-2x) Ni (x) PMo12O40, for adipic acid synthesis, Catal. Lett. 145(2015) 569-575. [6] P. Bhanja, K. Ghosh, S.S. Islam, A.K. Patra, S.M. Islam, A. Bhaumik, New hybrid Iron phosphonate material as an efficient catalyst for the synthesis of adipic acid in air and water, ACS Sustain. Chem. Eng. 4(2016) 7147-7157. [7] F. Cavani, L. Ferroni, A. Frattini, C. Lucarelli, A. Mazzini, K. Raabova, S. Alini, P. Accorinti, P. Babini, Evidence for the presence of alternative mechanisms in the oxidation of cyclohexanone to adipic acid with oxygen, catalysed by Keggin polyoxometalates, Appl. Catal. A 391(2011) 118-124. [8] S.A. Chavan, D. Srinivas, P. Ratnasamy, Oxidation of cyclohexane, cyclohexanone, and cyclohexanol to adipic acid by a non-HNO3 route over Co/Mn cluster complexes, J. Catal. 212(2002) 39-45. [9] A.K. Patra, A. Dutta, A. Bhaumik, Mesoporous core-shell fenton nanocatalyst:A mild, operationally simple approach to the synthesis of adipic acid, Chem. Eur. J. 19(2013) 12388-12395. [10] M. Vafaeezadeh, M. Mahmoodi Hashemi, Simple and green oxidation of cyclohexene to adipic acid with an efficient and durable silica-functionalized ammonium tungstate catalyst, Catal. Commun. 43(2014) 169-172. [11] M. Shang, T. Noël, Q. Wang, Y. Su, K. Miyabayashi, V. Hessel, S. Hasebe, 2-and 3-stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors, Chem. Eng. J. 260(2015) 454-462. [12] J. Alcañiz-Monge, G. Trautwein, A. Garcia-Garcia, Influence of peroxometallic intermediaries present on polyoxometalates nanoparticles surface on the adipic acid synthesis, J. Mol. Catal. A Chem. 394(2014) 211-216. [13] I.Q. Peñate, G. Lesage, P. Cognet, M. Poux, Clean synthesis of adipic acid from cyclohexene in microemulsions with stearyl dimethyl benzyl ammonium chloride as surfactant:From the laboratory to bench scale, Chem. Eng. J. 200-202(2012) 357-364. [14] P. Blach, Z. Böstrom, S. Franceschi-Messant, A. Lattes, E. Perez, I. Rico-Lattes, Recyclable process for sustainable adipic acid production in microemulsions, Tetrahedron 66(2010) 7124-7128. [15] L. Wang, Z. Chen, M. Huang, Z. Yang, P. Sun, K. Wang, W. Zhang, A green route to cyclohexanone:Selective oxidation of cyclohexanol promoted by non-precious catalyst of h-WO3 nanorods, Catal. Lett. 146(2016) 1283-1290. [16] M. Rezaei, A.N. Chermahini, H.A. Dabbagh, Green and selective oxidation of cyclohexane over vanadium pyrophosphate supported on mesoporous KIT-6, Chem. Eng. J. 314(2017) 515-525. [17] N. Imanaka, T. Masui, K. Jyoko, Selective liquid phase oxidation of cyclohexane over Pt/CeO2-ZrO2-SnO2/SiO2 catalysts with molecular oxygen, J. Adv. Ceram 4(2015) 111-117. [18] S.D. Nale, P.V. Rathod, V.H. Jadhav, Manganese incorporated on glucose as an efficient catalyst for the synthesis of adipic acid using molecular O-2 in aqueous medium, Appl. Catal., A 546(2017) 122-125. [19] J. Feliciano Miranda, P.M. Cuesta Zapata, E.E. Gonzo, M.L. Parentis, L.E. Davies, N.A. Bonini, Amorphous Cr/SiO2 materials hydrothermally treated:liquid phase cyclohexanol oxidation, Catal. Lett. 148(2018) 2082-2094. [20] A. Alshammari, A. Koeckritz, V.N. Kalevaru, A. Bagabas, A. Martin, Potential of supported gold bimetallic catalysts for green synthesis of adipic acid from cyclohexane, Top. Catal. 58(2015) 1069-1076. [21] Y. Liu, M.Q. Zhu, X.Z. Chen, U. Jameel, J.G. Lu, Coating of Au-Al2O3 catalyst in the wall of microcapillary and its application in cyclohexane oxidation, J. Flow Chem. 6(2016) 110-116. [22] Oxidation of cyclohexanol to epsilon-caprolactone with aqueous hydrogen peroxide on H3PW12O40 and Cs2.5H0.5PW12O40, DOI:10.1016/j.catcom.2008.03.006 [23] M. Conte, X. Liu, D.M. Murphy, S.H. Taylor, K. Whiston, G.J. Hutchings, Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings, Catal. Lett. 146(2016) 126-135. [24] S. Benadji, T. Mazari, L. Dermeche, N. Salhi, E. Cadot, C. Rabia, Clean alternative for adipic acid synthesis via liquid-phase oxidation of cyclohexanone and cyclohexanol over H3-2xCoxPMo12O40 catalysts with hydrogen peroxide, Catal. Lett. 143(2013) 749-755. [25] D. Amitouche, M. Haouas, T. Mazari, S. Mouanni, R. Canioni, C. Rabia, E. Cadot, C. Marchal-Roch, The primary stages of polyoxomolybdate catalyzed cyclohexanone oxidation by hydrogen peroxide as investigated by in situ NMR. Substrate activation and evolution of the working catalyst, Appl. Catal., A 561(2018) 104-116. [26] M. Moudjahed, L. Dermeche, S. Benadji, T. Mazari, C. Rabia, Dawson-type polyoxometalates as green catalysts for adipic acid synthesis, J. Mol. Catal. A Chem. 414(2016) 72-77. [27] J. Luo, Y. Huang, B. Ding, P. Wang, X. Geng, J. Zhang, Y. Wei, Single-atom Mn active site in a triol-stabilized beta-Anderson manganohexamolybdate for enhanced catalytic activity towards adipic acid production, Catalysts 8(2018) 121-133. [28] P. Wolf, C. Hammond, S. Conrad, I. Hermans, Post-synthetic preparation of Sn-, Tiand Zr-beta:a facile route to water tolerant, highly active Lewis acidic zeolites, Dalton Trans. 43(2014) 4514-4519. [29] J. Jin, X. Ye, Y. Li, Y. Wang, L. Li, J. Gu, W. Zhao, J. Shi, Synthesis of mesoporous beta and Sn-beta zeolites and their catalytic performances, Dalton Trans. 43(2014) 8196-8204. [30] A.B. Laursen, K.T. Højholt, L.F. Lundegaard, S.B. Simonsen, S. Helveg, F. Schüth, M. Paul, J.-D. Grunwaldt, S. Kegnæs, C.H. Christensen, K. Egeblad, Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles, Angew. Chem. 122(2010) 3582-3585. [31] C. Hammond, N. Dimitratos, R.L. Jenkins, J.A. Lopez-Sanchez, S.A. Kondrat, M. Hasbi ab Rahim, M.M. Forde, A. Thetford, S.H. Taylor, H. Hagen, E.E. Stangland, J.H. Kang, J.M. Moulijn, D.J. Willock, G.J. Hutchings, Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation:from synthesis to catalysis, ACS Catal. 3(2013) 689-699. [32] N.M.F. Carvalho, A. Horn Jr., O.A.C. Antunes, Cyclohexane oxidation catalyzed by mononuclear iron(III) complexes, Appl. Catal. A 305(2006) 140-145. [33] X. Yang, Y. Li, H. Yu, X. Gui, H. Wang, H. Huang, F. Peng, Enhanced catalytic activity of carbon nanotubes for the oxidation of cyclohexane by filling with Fe, Ni, and FeNi alloy nanowires, Aust. J. Chem. 69(2016) 689-695. [34] Y. Xie, F. Zhang, P. Liu, F. Hao, H.A. Luo, Catalytic oxidation of cyclohexane with dioxygen over boehmite supported trans-A(2)B(2) type metalloporphyrins catalyst, J. Mol. Catal. A Chem. 386(2014) 95-100. [35] B.B. Dong, K. Zhang, C.X. Li, C.Y. Yuan, X.C. Zheng, Synthesis and characterization of W-SBA-15 mesoporous material, Adv. Mater. Res. 485(2012) 31-34. [36] X. Fang, X. Li, Z. Hao, J. He, D. Chen, Preparation of complex oxide WO3-SnO2 for catalytic synthesis of adipic acid, Chem. World 54(2013) 328-331. [37] P.R. Makgwane, S.S. Ray, Efficient room temperature oxidation of cyclohexane over highly active hetero-mixed WO3/V2O5 oxide catalyst, Catal. Commun. 54(2014) 118-123. [38] Z. Hao, H. Yang, J. He, D. Chen, Preparation of WO3/SiO2 catalyst for green oxidation of cyclohexanone to adipic acid with H2O2, Applied Chemical Industry 42(2013) 245-247,252. [39] X. Li, Y. Tian, J. Li, D. Chen, M. Li, Hydrothermal preparation of tungsten-based catalyst Sn-doped for catalytic synthesis of adipic acid, Applied Chemical Industry 43(2014) 1050-1053. [40] F. Zhang, H. Yang, J. He, D. Chen, Preparation of lanthanum modified solid catalyst SnO2-WO3/La2O3 and its catalytic performance for synthesis of adipic acid, Chinese Rare Earths 34(2013) 46-49. [41] H. Li, Y. She, H. Fu, M. Cao, J. Wang, T. Wang, Synergistic effect of co-reactant promotes one-step oxidation of cyclohexane into adipic acid catalyzed by manganese porphyrins, Can. J. Chem. 93(2015) 696-701. [42] X. Gao, Y. Zhou, J. Gu, L. Li, Y. Li, Facile synthesis of hierarchical manganesecontaining TS-1 and its application on the oxidation of cyclohexanone with molecular oxygen, Microporous Mesoporous Mater. 275(2019) 263-269. [43] Y. Deng, B. Chen, J. Wu, X. Yuan, H. Luo, Effect of calcination atmosphere on the catalytic performance of MnAPO-36 molecular sieve, Petrochem. Technol. 40(2011) 247-250. [44] S. Chatterjee, P. Bhanja, L. Paul, M. Ali, A. Bhaumik, MnAPO-5 as an efficient heterogeneous catalyst for selective liquid phase partial oxidation reactions, Dalton Trans. 47(2018) 791-798. [45] G. Zou, W. Zhong, L. Mao, Q. Xu, J. Xiao, D. Yin, Z. Xiao, S.R. Kirk, T. Shu, A non-nitric acid method of adipic acid synthesis:organic solvent-and promoter-free oxidation of cyclohexanone with oxygen over hollow-structured Mn/TS-1 catalysts, Green Chem. 17(2015) 1884-1892. [46] Y. Han, S. Li, R. Ding, W. Xu, G. Zhang, Baeyer-Villiger oxidation of cyclohexanone catalyzed by cordierite honeycomb washcoated with Mg-Sn-W composite oxides, Chin. J. Chem. Eng. 27(2019) 564-574. [47] L. Chen, Y. Zhou, Z. Gui, H. Cheng, Z. Qi, Au nanoparticles confined in hybrid shells of silica nanospheres for solvent-free aerobic cyclohexane oxidation, J. Mater. Sci. 52(2017) 7186-7198. [48] R. Liu, H. Huang, H. Li, Y. Liu, J. Zhong, Y. Li, S. Zhang, Z. Kang, Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation, ACS Catal. 4(2014) 328-336. [49] A. Alshammari, A. Koeckritz, V.N. Kalevaru, A. Bagabas, A. Martin, Significant formation of adipic acid by direct oxidation of cyclohexane using supported nano-gold catalysts, Chemcatchem 4(2012) 1330-1336. [50] B.P.C. Hereijgers, B.M. Weckhuysen, Aerobic oxidation of cyclohexane by gold-based catalysts:New mechanistic insight by thorough product analysis, J. Catal. 270(2010) 16-25. [51] A.M. Gill, C.S. Hinde, R.K. Leary, M.E. Potter, A. Jouve, P.P. Wells, P.A. Midgley, J.M. Thomas, R. Raja, Design of highly selective platinum nanoparticle catalysts for the aerobic oxidation of KA-oil using continuous-flow chemistry, Chemsuschem 9(2016) 423-427. [52] X. Jiang, Y. Shan, L. Wu, M. Lu, M. Li, Highly efficient catalytic system for cyclohexanone synthesis by cyclohexane oxidation with oxygen, Acta Petrolei Sinica. Petroleum Processing Section 29(2013) 984-990. [53] C.A.O. Xiaohua, Preparation,characterization of Csx H6-x P2 W18 O62 nH2O and its activity on catalytic synthesis of adipic acid, J. Funct. Mater. 46(2015) 6124-6128. [54] X. Cao, C. Xu, D. Zhou, Y. Lei, Preparation, characterization of Cs_xH_(6-x)P_2W_(18) O_(62)·nH_2O/diatomite and its catalytic application for adipic acid synthesis, Acta Petrolei Sinica. Petroleum Processing Section 31(2015) 1430-1437. [55] T. Stoylkova, C. Chanev, Aerial oxidation of alcohols over CuAl-, CoAl-, NiAl-, ZnAllayered double hydroxides and their mixed oxides, React. Kinet. Mech. Catal. 117(2016) 47-58. [56] Y. Qu, C. Fang, M. Duan, J. Wang, Investigations on the reaction kinetics and the catalytic effect of Cu(II) and V(V) in the oxidation of cyclohexanol by nitric acid, React. Kinet. Mech. Catal. 112(2014) 209-226. [57] F. Yang, S. Zhou, S. Gao, X. Liu, S. Long, Y. Kong, In situ embedding of ultra-fine nickel oxide nanoparticles in HMS with enhanced catalytic activities of styrene epoxidation, Microporous Mesoporous Mater. 238(2017) 69-77. [58] S. Rahman, C. Santra, R. Kumar, J. Bahadur, A. Sultana, R. Schweins, D. Sen, S. Maity, S. Mazumdar, B. Chowdhury, Highly active Ga promoted co-HMS-X catalyst towards styrene epoxidation reaction using molecular O-2, Appl. Catal. A 482(2014) 61-68. [59] T.A. Zepeda, A. Infantes-Molina, J.N. Diaz de Leon, R. Obeso-Estrella, S. Fuentes, G. Alonso-Nunez, B. Pawelec, Synthesis and characterization of Ga-modified Ti-HMS oxide materials with varying Ga content, J. Mol. Catal. A Chem. 397(2015) 26-35. [60] X. Li, L. Zhang, H. Gao, Q. Chen, Preparation, characterization, and catalytic performance of Ta-HMS mesoporous molecular sieve, Russ. J. Phys. Chem. A 90(2016) 1545-1551. [61] Y.Y. Liu, K. Murata, M. Inaba, Synthesis and catalytic activity of niobium-containing hexagonal mesoporous silica, Chem. Lett. 32(2003) 992-993. [62] P.T. Tanev, T.J. Pinnavaia, A neutral templating route to mesoporous molecular sieves, Science (New York, N.Y.) 267(1995) 865-867. [63] X. Jin, M. Zhao, C. Zeng, W. Yan, Z. Song, P.S. Thapa, B. Subramaniam, R.V. Chaudhari, Oxidation of glycerol to dicarboxylic acids using cobalt catalysts, ACS Catal. 6(2016) 4576-4583. [64] C. Xia, L. Ju, Y. Zhao, H. Xu, B. Zhu, F. Gao, M. Lin, Z. Dai, X. Zou, X. Shu, Heterogeneous oxidation of cyclohexanone catalyzed by TS-1:Combined experimental and DFT studies, Chin. J. Catal. 36(2015) 845-854. [65] M.S. Kumar, J. Pérez-Ramírez, M.N. Debbagh, B. Smarsly, U. Bentrup, A. Brückner, Evidence of the vital role of the pore network on various catalytic conversions of N2O over Fe-silicalite and Fe-SBA-15 with the same iron constitution, Appl. Catal. B 62(2006) 244-254. [66] A. Boudjemaa, K. Bachari, M. Trari, Photo-induced hydrogen on iron hexagonal mesoporous silica (Fe-HMS) photo-catalyst, Int. J. Energy Res. 37(2013) 171-178. [67] H. Perez, P. Navarro, J. Jose Delgado, M. Montes, Mn-SBA15 catalysts prepared by impregnation:Influence of the manganese precursor, Appl. Catal. A 400(2011) 238-248. [68] J. Pisk, D. Agustin, R. Poli, Organic salts and merrifield resin supported PM12O40(3-) (M=Mo or W) as catalysts for adipic acid synthesis, Molecules 24(2019). [69] Y. Deng, L. Ma, Y. Mao, Biological production of adipic acid from renewable substrates:Current and future methods, Biochem. Eng. J. 105(2016) 16-26. [70] Keggin-Type Heteropoly Salts as Bifunctional Catalysts in Aerobic Baeyer-Villiger Oxidation, DOI:10.3390/ma11071208 |
[1] | Peiwei Han, Chunhua Xu, Yamin Wang, Chenglin Sun, Huangzhao Wei, Haibo Jin, Ying Zhao, Lei Ma. The high catalytic activity and strong stability of 3%Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol: The role of surface functional groups and FeOx particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 105-114. |
[2] | Yufei Yang, Jieyi Ma, Junyan Wu, Weixia Zhu, Yadong Zhang. Experimental and theoretical study on N-hydroxyphthalimide and its derivatives catalyzed aerobic oxidation of cyclohexylbenzene [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 124-130. |
[3] | Wei Zhou, Xiaoxiao Meng, Liang Xie, Junfeng Li, Yani Ding, Yanlin Su, Jihui Gao, Guangbo Zhao. Simultaneous utilization of electro-generated O2 and H2 for H2O2 production: An upgrade of the Pd-catalytic electro-Fenton process for pollutants degradation [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 363-368. |
[4] | Ling Xu, Ji Li, Wenbin Zeng, Kai Liu, Yibing Ma, Liping Fang, Chenlu Shi. Surfactant-assisted removal of 2,4-dichlorophenol from soil by zero-valent Fe/Cu activated persulfate [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 447-455. |
[5] | Muhammad Faizan, Yingwei Li, Ruirui Zhang, Xingsheng Wang, Piao Song, Ruixia Liu. Progress of vanadium phosphorous oxide catalyst for n-butane selective oxidation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 297-315. |
[6] | Jian Jian, Dexing Yang, Peng Liu, Kuiyi You, Weijie Sun, Hu Zhou, Zhengqiu Yuan, Qiuhong Ai, Hean Luo. Solvent-free partial oxidation of cyclohexane to KA oil over hydrotalcite-derived Cu-MgAlO mixed metal oxides [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 269-276. |
[7] | Vitória M. Almeida, Carla A. Orge, M. Fernando R. Pereira, O. Salomé G.P. Soares. O3 based advanced oxidation for ibuprofen degradation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 277-284. |
[8] | Yanqiang Shi, Yuetong Xia, Guangtong Xu, Langyou Wen, Guohua Gao, Baoning Zong. Hydrogen peroxide and applications in green hydrocarbon nitridation and oxidation [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 145-161. |
[9] | Yingzhen Zhang, Yonggang Lei, Tianxue Zhu, Zengxing Li, Shen Xu, Jianying Huang, Xiao Li, Weilong Cai, Yuekun Lai, Xiaojun Bao. Surface plasmon resonance metal-coupled biomass carbon modified TiO2 nanorods for photoelectrochemical water splitting [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 403-411. |
[10] | Mingming Guo, Lizhong Liu, Jia-nan Gu, Hongbo Zhang, Xin Min, Jianxing Liang, Jinping Jia, Kan Li, Tonghua Sun. Catalytic performance improvement of volatile organic compounds oxidation over MnOx and GdMnO3 composite oxides from spent lithium-ion batteries: Effect of acid treatment [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 278-288. |
[11] | Zhen Wei, Xuanqi Kang, Shangyuan Xu, Xiaokang Zhou, Bo Jia, Qing Feng. Electrochemical oxidation of Rhodamine B with cerium and sodium dodecyl benzene sulfonate co-modified Ti/PbO2 electrodes: Preparation, characterization, optimization, application [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 191-202. |
[12] | Zhaohui Chen, Yasi Mo, Dong Lin, Yongxiao Tuo, Xiang Feng, Yibin Liu, Xiaobo Chen, De Chen, Chaohe Yang. Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 98-105. |
[13] | Zhihao Yi, Jie Sun, Jigang Li, Tian Zhou, Shouping Wei, Hongjia Xie, Yulin Yang. High efficient removal of HCN over porous CuO/CeO2 micro-nano spheres at lower temperature range [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 155-164. |
[14] | Detao Pan, Guangxiao Li, Yuanhai Su, Huilong Wei, Zhenghong Luo. Kinetic study for the oxidation of cyclohexanol and cyclohexanone with nitric acid to adipic acid [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 183-189. |
[15] | Rongrui Deng, Hao Xiao, Zhaoming Xie, Zuohua Liu, Qiang Yu, Geng Chen, Changyuan Tao. A novel method for extracting vanadium by low temperature sodium roasting from converter vanadium slag [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2208-2213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||