Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (10): 2542-2548.DOI: 10.1016/j.cjche.2020.04.013
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Wenjuan Yan1, Wenxiang Zhang1, Qi Xia1, Shuaishuai Wang1, Shuxia Zhang1, Jian Shen2, Xin Jin1
Received:
2019-12-10
Revised:
2020-04-11
Online:
2020-12-03
Published:
2020-10-28
Contact:
Xin Jin
Supported by:
Wenjuan Yan1, Wenxiang Zhang1, Qi Xia1, Shuaishuai Wang1, Shuxia Zhang1, Jian Shen2, Xin Jin1
通讯作者:
Xin Jin
基金资助:
Wenjuan Yan, Wenxiang Zhang, Qi Xia, Shuaishuai Wang, Shuxia Zhang, Jian Shen, Xin Jin. Highly dispersed metal incorporated hexagonal mesoporous silicates for catalytic cyclohexanone oxidation to adipic acid[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2542-2548.
Wenjuan Yan, Wenxiang Zhang, Qi Xia, Shuaishuai Wang, Shuxia Zhang, Jian Shen, Xin Jin. Highly dispersed metal incorporated hexagonal mesoporous silicates for catalytic cyclohexanone oxidation to adipic acid[J]. 中国化学工程学报, 2020, 28(10): 2542-2548.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.04.013
[1] S.S. Acharyya, S. Ghosh, R. Bal, Nanoclusters of Cu(ii) supported on nanocrystalline W(Ⅵ) oxide:a potential catalyst for single-step conversion of cyclohexane to adipic acid, Green Chem. 17(2015) 3490-3499. [2] P. Bhanja, S. Chatterjee, A.K. Patra, A. Bhaumik, A new microporous oxyfluorinated titanium(IV) phosphate as an efficient heterogeneous catalyst for the selective oxidation of cyclohexanone, J. Colloid Interface Sci. 511(2018) 92-100. [3] Y. Matsumoto, M. Kuriyama, K. Yamamoto, K. Nishida, O. Onomura, Metal-free synthesis of adipic acid via organocatalytic direct oxidation of cyclohexane under ambient temperature and pressure, Org. Process. Res. Dev. 22(2018) 1312-1317. [4] L. Mouheb, L. Dermeche, T. Mazari, S. Benadji, N. Essayem, C. Rabia, Clean adipic acid synthesis from liquid-phase oxidation of cyclohexanone and cyclohexanol using (NH4)(x)A(y)PMo(12)O(40) (A:Sb, Sn, Bi) mixed heteropolysalts and hydrogen peroxide in free solvent, Catal. Lett. 148(2018) 612-620. [5] A. Tahar, S. Benadji, T. Mazari, L. Dermeche, C. Marchal-Roch, C. Rabia, Preparation, characterization and reactivity of Keggin type phosphomolybdates, H3-2x Ni (x) PMo12O40 and (NH4)(3-2x) Ni (x) PMo12O40, for adipic acid synthesis, Catal. Lett. 145(2015) 569-575. [6] P. Bhanja, K. Ghosh, S.S. Islam, A.K. Patra, S.M. Islam, A. Bhaumik, New hybrid Iron phosphonate material as an efficient catalyst for the synthesis of adipic acid in air and water, ACS Sustain. Chem. Eng. 4(2016) 7147-7157. [7] F. Cavani, L. Ferroni, A. Frattini, C. Lucarelli, A. Mazzini, K. Raabova, S. Alini, P. Accorinti, P. Babini, Evidence for the presence of alternative mechanisms in the oxidation of cyclohexanone to adipic acid with oxygen, catalysed by Keggin polyoxometalates, Appl. Catal. A 391(2011) 118-124. [8] S.A. Chavan, D. Srinivas, P. Ratnasamy, Oxidation of cyclohexane, cyclohexanone, and cyclohexanol to adipic acid by a non-HNO3 route over Co/Mn cluster complexes, J. Catal. 212(2002) 39-45. [9] A.K. Patra, A. Dutta, A. Bhaumik, Mesoporous core-shell fenton nanocatalyst:A mild, operationally simple approach to the synthesis of adipic acid, Chem. Eur. J. 19(2013) 12388-12395. [10] M. Vafaeezadeh, M. Mahmoodi Hashemi, Simple and green oxidation of cyclohexene to adipic acid with an efficient and durable silica-functionalized ammonium tungstate catalyst, Catal. Commun. 43(2014) 169-172. [11] M. Shang, T. Noël, Q. Wang, Y. Su, K. Miyabayashi, V. Hessel, S. Hasebe, 2-and 3-stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors, Chem. Eng. J. 260(2015) 454-462. [12] J. Alcañiz-Monge, G. Trautwein, A. Garcia-Garcia, Influence of peroxometallic intermediaries present on polyoxometalates nanoparticles surface on the adipic acid synthesis, J. Mol. Catal. A Chem. 394(2014) 211-216. [13] I.Q. Peñate, G. Lesage, P. Cognet, M. Poux, Clean synthesis of adipic acid from cyclohexene in microemulsions with stearyl dimethyl benzyl ammonium chloride as surfactant:From the laboratory to bench scale, Chem. Eng. J. 200-202(2012) 357-364. [14] P. Blach, Z. Böstrom, S. Franceschi-Messant, A. Lattes, E. Perez, I. Rico-Lattes, Recyclable process for sustainable adipic acid production in microemulsions, Tetrahedron 66(2010) 7124-7128. [15] L. Wang, Z. Chen, M. Huang, Z. Yang, P. Sun, K. Wang, W. Zhang, A green route to cyclohexanone:Selective oxidation of cyclohexanol promoted by non-precious catalyst of h-WO3 nanorods, Catal. Lett. 146(2016) 1283-1290. [16] M. Rezaei, A.N. Chermahini, H.A. Dabbagh, Green and selective oxidation of cyclohexane over vanadium pyrophosphate supported on mesoporous KIT-6, Chem. Eng. J. 314(2017) 515-525. [17] N. Imanaka, T. Masui, K. Jyoko, Selective liquid phase oxidation of cyclohexane over Pt/CeO2-ZrO2-SnO2/SiO2 catalysts with molecular oxygen, J. Adv. Ceram 4(2015) 111-117. [18] S.D. Nale, P.V. Rathod, V.H. Jadhav, Manganese incorporated on glucose as an efficient catalyst for the synthesis of adipic acid using molecular O-2 in aqueous medium, Appl. Catal., A 546(2017) 122-125. [19] J. Feliciano Miranda, P.M. Cuesta Zapata, E.E. Gonzo, M.L. Parentis, L.E. Davies, N.A. Bonini, Amorphous Cr/SiO2 materials hydrothermally treated:liquid phase cyclohexanol oxidation, Catal. Lett. 148(2018) 2082-2094. [20] A. Alshammari, A. Koeckritz, V.N. Kalevaru, A. Bagabas, A. Martin, Potential of supported gold bimetallic catalysts for green synthesis of adipic acid from cyclohexane, Top. Catal. 58(2015) 1069-1076. [21] Y. Liu, M.Q. Zhu, X.Z. Chen, U. Jameel, J.G. Lu, Coating of Au-Al2O3 catalyst in the wall of microcapillary and its application in cyclohexane oxidation, J. Flow Chem. 6(2016) 110-116. [22] Oxidation of cyclohexanol to epsilon-caprolactone with aqueous hydrogen peroxide on H3PW12O40 and Cs2.5H0.5PW12O40, DOI:10.1016/j.catcom.2008.03.006 [23] M. Conte, X. Liu, D.M. Murphy, S.H. Taylor, K. Whiston, G.J. Hutchings, Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings, Catal. Lett. 146(2016) 126-135. [24] S. Benadji, T. Mazari, L. Dermeche, N. Salhi, E. Cadot, C. Rabia, Clean alternative for adipic acid synthesis via liquid-phase oxidation of cyclohexanone and cyclohexanol over H3-2xCoxPMo12O40 catalysts with hydrogen peroxide, Catal. Lett. 143(2013) 749-755. [25] D. Amitouche, M. Haouas, T. Mazari, S. Mouanni, R. Canioni, C. Rabia, E. Cadot, C. Marchal-Roch, The primary stages of polyoxomolybdate catalyzed cyclohexanone oxidation by hydrogen peroxide as investigated by in situ NMR. Substrate activation and evolution of the working catalyst, Appl. Catal., A 561(2018) 104-116. [26] M. Moudjahed, L. Dermeche, S. Benadji, T. Mazari, C. Rabia, Dawson-type polyoxometalates as green catalysts for adipic acid synthesis, J. Mol. Catal. A Chem. 414(2016) 72-77. [27] J. Luo, Y. Huang, B. Ding, P. Wang, X. Geng, J. Zhang, Y. Wei, Single-atom Mn active site in a triol-stabilized beta-Anderson manganohexamolybdate for enhanced catalytic activity towards adipic acid production, Catalysts 8(2018) 121-133. [28] P. Wolf, C. Hammond, S. Conrad, I. Hermans, Post-synthetic preparation of Sn-, Tiand Zr-beta:a facile route to water tolerant, highly active Lewis acidic zeolites, Dalton Trans. 43(2014) 4514-4519. [29] J. Jin, X. Ye, Y. Li, Y. Wang, L. Li, J. Gu, W. Zhao, J. Shi, Synthesis of mesoporous beta and Sn-beta zeolites and their catalytic performances, Dalton Trans. 43(2014) 8196-8204. [30] A.B. Laursen, K.T. Højholt, L.F. Lundegaard, S.B. Simonsen, S. Helveg, F. Schüth, M. Paul, J.-D. Grunwaldt, S. Kegnæs, C.H. Christensen, K. Egeblad, Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles, Angew. Chem. 122(2010) 3582-3585. [31] C. Hammond, N. Dimitratos, R.L. Jenkins, J.A. Lopez-Sanchez, S.A. Kondrat, M. Hasbi ab Rahim, M.M. Forde, A. Thetford, S.H. Taylor, H. Hagen, E.E. Stangland, J.H. Kang, J.M. Moulijn, D.J. Willock, G.J. Hutchings, Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation:from synthesis to catalysis, ACS Catal. 3(2013) 689-699. [32] N.M.F. Carvalho, A. Horn Jr., O.A.C. Antunes, Cyclohexane oxidation catalyzed by mononuclear iron(III) complexes, Appl. Catal. A 305(2006) 140-145. [33] X. Yang, Y. Li, H. Yu, X. Gui, H. Wang, H. Huang, F. Peng, Enhanced catalytic activity of carbon nanotubes for the oxidation of cyclohexane by filling with Fe, Ni, and FeNi alloy nanowires, Aust. J. Chem. 69(2016) 689-695. [34] Y. Xie, F. Zhang, P. Liu, F. Hao, H.A. Luo, Catalytic oxidation of cyclohexane with dioxygen over boehmite supported trans-A(2)B(2) type metalloporphyrins catalyst, J. Mol. Catal. A Chem. 386(2014) 95-100. [35] B.B. Dong, K. Zhang, C.X. Li, C.Y. Yuan, X.C. Zheng, Synthesis and characterization of W-SBA-15 mesoporous material, Adv. Mater. Res. 485(2012) 31-34. [36] X. Fang, X. Li, Z. Hao, J. He, D. Chen, Preparation of complex oxide WO3-SnO2 for catalytic synthesis of adipic acid, Chem. World 54(2013) 328-331. [37] P.R. Makgwane, S.S. Ray, Efficient room temperature oxidation of cyclohexane over highly active hetero-mixed WO3/V2O5 oxide catalyst, Catal. Commun. 54(2014) 118-123. [38] Z. Hao, H. Yang, J. He, D. Chen, Preparation of WO3/SiO2 catalyst for green oxidation of cyclohexanone to adipic acid with H2O2, Applied Chemical Industry 42(2013) 245-247,252. [39] X. Li, Y. Tian, J. Li, D. Chen, M. Li, Hydrothermal preparation of tungsten-based catalyst Sn-doped for catalytic synthesis of adipic acid, Applied Chemical Industry 43(2014) 1050-1053. [40] F. Zhang, H. Yang, J. He, D. Chen, Preparation of lanthanum modified solid catalyst SnO2-WO3/La2O3 and its catalytic performance for synthesis of adipic acid, Chinese Rare Earths 34(2013) 46-49. [41] H. Li, Y. She, H. Fu, M. Cao, J. Wang, T. Wang, Synergistic effect of co-reactant promotes one-step oxidation of cyclohexane into adipic acid catalyzed by manganese porphyrins, Can. J. Chem. 93(2015) 696-701. [42] X. Gao, Y. Zhou, J. Gu, L. Li, Y. Li, Facile synthesis of hierarchical manganesecontaining TS-1 and its application on the oxidation of cyclohexanone with molecular oxygen, Microporous Mesoporous Mater. 275(2019) 263-269. [43] Y. Deng, B. Chen, J. Wu, X. Yuan, H. Luo, Effect of calcination atmosphere on the catalytic performance of MnAPO-36 molecular sieve, Petrochem. Technol. 40(2011) 247-250. [44] S. Chatterjee, P. Bhanja, L. Paul, M. Ali, A. Bhaumik, MnAPO-5 as an efficient heterogeneous catalyst for selective liquid phase partial oxidation reactions, Dalton Trans. 47(2018) 791-798. [45] G. Zou, W. Zhong, L. Mao, Q. Xu, J. Xiao, D. Yin, Z. Xiao, S.R. Kirk, T. Shu, A non-nitric acid method of adipic acid synthesis:organic solvent-and promoter-free oxidation of cyclohexanone with oxygen over hollow-structured Mn/TS-1 catalysts, Green Chem. 17(2015) 1884-1892. [46] Y. Han, S. Li, R. Ding, W. Xu, G. Zhang, Baeyer-Villiger oxidation of cyclohexanone catalyzed by cordierite honeycomb washcoated with Mg-Sn-W composite oxides, Chin. J. Chem. Eng. 27(2019) 564-574. [47] L. Chen, Y. Zhou, Z. Gui, H. Cheng, Z. Qi, Au nanoparticles confined in hybrid shells of silica nanospheres for solvent-free aerobic cyclohexane oxidation, J. Mater. Sci. 52(2017) 7186-7198. [48] R. Liu, H. Huang, H. Li, Y. Liu, J. Zhong, Y. Li, S. Zhang, Z. Kang, Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation, ACS Catal. 4(2014) 328-336. [49] A. Alshammari, A. Koeckritz, V.N. Kalevaru, A. Bagabas, A. Martin, Significant formation of adipic acid by direct oxidation of cyclohexane using supported nano-gold catalysts, Chemcatchem 4(2012) 1330-1336. [50] B.P.C. Hereijgers, B.M. Weckhuysen, Aerobic oxidation of cyclohexane by gold-based catalysts:New mechanistic insight by thorough product analysis, J. Catal. 270(2010) 16-25. [51] A.M. Gill, C.S. Hinde, R.K. Leary, M.E. Potter, A. Jouve, P.P. Wells, P.A. Midgley, J.M. Thomas, R. Raja, Design of highly selective platinum nanoparticle catalysts for the aerobic oxidation of KA-oil using continuous-flow chemistry, Chemsuschem 9(2016) 423-427. [52] X. Jiang, Y. Shan, L. Wu, M. Lu, M. Li, Highly efficient catalytic system for cyclohexanone synthesis by cyclohexane oxidation with oxygen, Acta Petrolei Sinica. Petroleum Processing Section 29(2013) 984-990. [53] C.A.O. Xiaohua, Preparation,characterization of Csx H6-x P2 W18 O62 nH2O and its activity on catalytic synthesis of adipic acid, J. Funct. Mater. 46(2015) 6124-6128. [54] X. Cao, C. Xu, D. Zhou, Y. Lei, Preparation, characterization of Cs_xH_(6-x)P_2W_(18) O_(62)·nH_2O/diatomite and its catalytic application for adipic acid synthesis, Acta Petrolei Sinica. Petroleum Processing Section 31(2015) 1430-1437. [55] T. Stoylkova, C. Chanev, Aerial oxidation of alcohols over CuAl-, CoAl-, NiAl-, ZnAllayered double hydroxides and their mixed oxides, React. Kinet. Mech. Catal. 117(2016) 47-58. [56] Y. Qu, C. Fang, M. Duan, J. Wang, Investigations on the reaction kinetics and the catalytic effect of Cu(II) and V(V) in the oxidation of cyclohexanol by nitric acid, React. Kinet. Mech. Catal. 112(2014) 209-226. [57] F. Yang, S. Zhou, S. Gao, X. Liu, S. Long, Y. Kong, In situ embedding of ultra-fine nickel oxide nanoparticles in HMS with enhanced catalytic activities of styrene epoxidation, Microporous Mesoporous Mater. 238(2017) 69-77. [58] S. Rahman, C. Santra, R. Kumar, J. Bahadur, A. Sultana, R. Schweins, D. Sen, S. Maity, S. Mazumdar, B. Chowdhury, Highly active Ga promoted co-HMS-X catalyst towards styrene epoxidation reaction using molecular O-2, Appl. Catal. A 482(2014) 61-68. [59] T.A. Zepeda, A. Infantes-Molina, J.N. Diaz de Leon, R. Obeso-Estrella, S. Fuentes, G. Alonso-Nunez, B. Pawelec, Synthesis and characterization of Ga-modified Ti-HMS oxide materials with varying Ga content, J. Mol. Catal. A Chem. 397(2015) 26-35. [60] X. Li, L. Zhang, H. Gao, Q. Chen, Preparation, characterization, and catalytic performance of Ta-HMS mesoporous molecular sieve, Russ. J. Phys. Chem. A 90(2016) 1545-1551. [61] Y.Y. Liu, K. Murata, M. Inaba, Synthesis and catalytic activity of niobium-containing hexagonal mesoporous silica, Chem. Lett. 32(2003) 992-993. [62] P.T. Tanev, T.J. Pinnavaia, A neutral templating route to mesoporous molecular sieves, Science (New York, N.Y.) 267(1995) 865-867. [63] X. Jin, M. Zhao, C. Zeng, W. Yan, Z. Song, P.S. Thapa, B. Subramaniam, R.V. Chaudhari, Oxidation of glycerol to dicarboxylic acids using cobalt catalysts, ACS Catal. 6(2016) 4576-4583. [64] C. Xia, L. Ju, Y. Zhao, H. Xu, B. Zhu, F. Gao, M. Lin, Z. Dai, X. Zou, X. Shu, Heterogeneous oxidation of cyclohexanone catalyzed by TS-1:Combined experimental and DFT studies, Chin. J. Catal. 36(2015) 845-854. [65] M.S. Kumar, J. Pérez-Ramírez, M.N. Debbagh, B. Smarsly, U. Bentrup, A. Brückner, Evidence of the vital role of the pore network on various catalytic conversions of N2O over Fe-silicalite and Fe-SBA-15 with the same iron constitution, Appl. Catal. B 62(2006) 244-254. [66] A. Boudjemaa, K. Bachari, M. Trari, Photo-induced hydrogen on iron hexagonal mesoporous silica (Fe-HMS) photo-catalyst, Int. J. Energy Res. 37(2013) 171-178. [67] H. Perez, P. Navarro, J. Jose Delgado, M. Montes, Mn-SBA15 catalysts prepared by impregnation:Influence of the manganese precursor, Appl. Catal. A 400(2011) 238-248. [68] J. Pisk, D. Agustin, R. Poli, Organic salts and merrifield resin supported PM12O40(3-) (M=Mo or W) as catalysts for adipic acid synthesis, Molecules 24(2019). [69] Y. Deng, L. Ma, Y. Mao, Biological production of adipic acid from renewable substrates:Current and future methods, Biochem. Eng. J. 105(2016) 16-26. [70] Keggin-Type Heteropoly Salts as Bifunctional Catalysts in Aerobic Baeyer-Villiger Oxidation, DOI:10.3390/ma11071208 |
[1] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[3] | Zijie Zhang, Qianyu Zha, Ying Liu, Zhibing Zhang, Jia Liu, Zheng Zhou. Study on the epoxidation of olefins with H2O2 catalyzed by biquaternary ammonium phosphotungstic acid [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 146-154. |
[4] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[5] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[6] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[7] | Yuxi Chai, Yanan Zhang, Yannan Tan, Zhiwei Li, Huangzhao Wei, Chenglin Sun, Haibo Jin, Zhao Mu, Lei Ma. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 80-88. |
[8] | Peiyin Chen, Yanxiong Fang, Kaihong Xie, Yao Chen, Yang Liu, Hongliang Zuo, Weijian Lu, Baoyu Liu. Lacunary silicotungstic heteropoly salts as high-performance catalysts in oxidation of cyclopentene [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 152-159. |
[9] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[10] | Da Ke, Minjia Wang, Jiancheng Ruan, Xinzhi Chen, Shaodong Zhou. Efficient, continuous oxidation of durene to pyromellitic dianhydride mediated by a V-Ti-P ternary catalyst: The remarkable doping effect [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 156-164. |
[11] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 192-201. |
[12] | Mengting Liu, Xuexue Dong, Zengjing Guo, Aihua Yuan, Shuying Gao, Fu Yang. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 236-245. |
[13] | Jitendra Diwakar, Selvamani Arumugam, Bhavna Saini, Anup Prakash Tathod, Nagabhatla Viswanadham. Mesoporous titanium-aluminosilicate as an efficient catalyst for selective oxidation of cyclohexene at mild reaction conditions [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 257-265. |
[14] | Suhang Jiang, Lijuan Tan, Yujia Tong, Lijian Shi, Weixing Li. A heterogeneous double chamber electro-Fenton with high production of H2O2 using La–CeO2 modified graphite felt as cathode [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 98-105. |
[15] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 180-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||